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1Introduction

1.1 What is SimSpark?

SimSpark is a multi-agent simulation system for agents in three-dimensional environments. Its
goal is to provide a high degree of flexibility for creating new types of simulations. It builds on
a flexible application framework and exhausts the idea of replaceable components throughout
its implementation.

In comparison to specialized simulators, users can create new simulations by using a scene
description language. SimSpark is a powerful tool to state different multi-agent research ques-
tions and is used as the official simulator for the RoboCup Simulation League competition.

1.2 History of the Project

SimSpark was developed as part of the RoboCup initiative, initially called Robot World Cup
Initiative. It is an international research and education initiative. It is an attempt to foster AI
and intelligent robotics research by providing a standard problem where wide range of tech-
nologies can be integrated and examined, as well as being used for integrated project-oriented
education.

For this purpose, RoboCup chose to use soccer game as a primary domain, and organizes
competitive RoboCups. The simulation league is one of several leagues where the entire soc-
cer game takes places in a simulated environment. SimSpark’s two dimensional predecessor
simulation models the players and the ball as flat spheres. It further lacks a realistic physical
environment.

As one of the long term goals of the soccer simulation is to aim for realism the long term
objective are realistic humanoid players in a physical environment. These players should one
day challenge the champion of the most recent World Cup.

Therefore, on the RoboCup 2003 Symposium a new approach to a three-dimensional phys-
ically realistic soccer simulation was proposed [KO04]. In a road map discussion for the Soccer
Simulation League on RoboCup 2003, the participants decided on adding the three-dimensional
simulation to the competitions.

For RoboCup 2004, SimSpark was successfully used for the first official competition in
RoboCup Simulation League 3D. The soccer simulation for this tournament was developed in
parallel with the SimSpark simulator. In its initial version players were modeled as spheres in
a physical three dimensional world. Since then SimSpark grew considerably and now supports
humanoid players with articulated bodies.

It served from the beginning as a test bed and a guide for essential new features that were
added to the simulator during development. However changes to the simulator core were never
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customized for the soccer simulation. Instead generic simulator services were implemented
with all soccer specific details contained in a set of plugins (see [OR05]).

1.3 About this Manual

This manual describes the SimSpark simulator. Like the simulator itself it is subject to constant
change in an ongoing development effort. It assumes that you are familiar with the basic
concepts of multi agent simulations.

It aims to be a guide on how to develop your own RoboCup agents, construct new robot
models, build your own custom monitor or use the trainer command protocol to test your
agents.

If there are errors, inconsistencies, or oddities, please send a message to the SimSpark
developer mailing list 1 (please see chapter 9 for details) with the location of the error and a
suggestion of how it should be corrected. We are always looking for anyone who has an idea
on how to improve the manual, as well as proofread or rewrite a section of the manual.

The latest manual can be downloaded at the SimSpark project homepage 2.

1.4 Reader’s Guide to the Manual

This section gives a rough overview about the contents of this manual.
In chapter 2 we give a short overview introduction and to the system and its defining

components. This overview is given both from a component view that distinguishes the server,
the monitor the logplayer etc. and from a software architecture point of view. In the latter we
describe the different software modules, their purpose and responsibility.

In chapter 3 you will find instructions howto build SimSpark from source and how to install
it into your system. Further an illustrated example run of a simulation is given as a first guide
to get the you started.

The following chapter 4 is a reference gives you detailed information about the messages
that are sent from the server to the agent and vice versa. These messages contain information
about agent percepts and agent command strings.

In chapter 5 we give an overview about the available monitor and log player setups. Their
configuration and usage is described in detail there.

The following chapter 6 explains the rcssagent3d demo agent. This agent is a reference
implementation and a basis to start your own agent implementation work. We explain how to
configure the agent to use custom behavior implementations.

In chapter 7 we introduce simulations that are currently available for SimSpark. In partic-
ular the soccer simulation is described in detail here.

The robot models, and in particular our Soccerbot is described in chapter 8.
In the resources chapter 9 we point you to further papers and thesis works related to

SimSpark. In addition mailing lists, web sites and IRC channels are given that allow you to
participate in the project and to reach the SimSpark developers.

1simspark-devel@lists.sourceforge.net
2http://simspark.sourceforge.net/
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2System Overview

SimSpark is built upon an application framework called zeitgeist. This framework provides
basic OS abstractions like file and archive support, logging, shared libraries etc.), a scripting
interface to Ruby and a powerful plugin mechanism coupled with an object hierary that provides
a unified namespace. This library is the backbone of the system.

Zeitgeist allows us to load new classes at runtime from plugins and install object instances
in a hierarchy. We can locate these instances via path expression just like files in a file sys-
tem. At various well known locations are objects called servers that provide services to other
parts of the system. The script server that provides an interface to the Ruby ist installed at
/sys/server/script.

Built as part of this object hierarchy is a scene graph that the system uses to represent
the simulated world. This scene graph and related concepts are managed within the next
layer of the system, that we call oxygen. It provides classes that encapsulate concepts like
transformations, basic geometric primitives, physical bodies and collision primitives. It further
provides access to a rigid body physical simulation.

The oxygen library further implements basic simulation services like agent management
and a monitor framework. It is responsible to keep track and to update connected agents and
monitor processes. Last but not least it provides a customizable run loop service. This service
is implemented as an abstract run loop that is extended with plugins as needed. In parts of the
system can be replaced or left out easily as for example rendering or monitor support.

The Visualization of the scene and input event processing services are provided by the
kerosin library. It implements the infrastructure for rendering and device management. Con-
crete implementations are again provided by plugins. This allows the simulation to use different
back ends or graphic engine. A default set of plugins utilizes plain OpenGL and the SDL library.

2.1 The Server

The SimSpark server hosts the simulation process that manages the simulation. It is responsible
to advance the simulation, i.e. modify the simulation state in a continuous run loop.

Objects in the scene change their state, i.e. one ore more of their properties like position,
speed or angular velocity changes due to several influences. They are under the control of a
rigid body physical simulation, that resolves collisions, applies drag, gravity etc. Agents that
take part in the simulation also modify objects with the help of their effectors.

Another responsibility of the server is to keep track of connected agent processes. Each
simulation cycle the server collects and reports sensor information for each of the sensors of all
connected agents. It further carries out received action sequences that an agent triggers using
its available effectors.
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Depending on the setup of the server it renders the simulation itself, i.e. it implements an
internal monitor that omits the network overhead or it manages and updates remote monitor
processes. In the latter configuration the rendering of the scene is deferred to remote processes.

2.2 The Monitor and Logplayer

The SimSpark monitor is responsible to render the current simulation. It connects to a runing
server instance from which it continuously receives a stream of update data that describes the
simulation states either in full or as incremental updates relative to the preceding state.

The format of the data stream that the server sends to the monitor is called monitor
format. It is a customizable language used to describe the simulation state.

Apart from describing the pure simulation state each monitor format may provide a mecha-
nism to transfer additional game specific state. For the soccer simulation this means for example
current play mode and goals scored so far.

The monitor client itself only renders the pure scene and defers the rendering of the game
state to plugins. These plugins are intended to parse the game state and display it as an overlay,
e.g. print out playmode and scores on screen.

The monitor can further be configured to read a protocol of scene updates from a file and
act as a logplayer. In this mode it does not connect to a server instance but replays an recorded
game. The format of the logfile is identical to the monitor protocol used on the network.

2.3 The Sample Client

SimSpark provides a simple agent implementation that demonstrate how to interact with the
server. It demonstrates how to connect to the server, how to read perceptor values and how to
use effectors. The demo behaviour of the agent is implemented as a plugin that can be replaced
in order to customize it for different simulations. 1

2.4 Available Simulations

SimSpark currently provides two version of robotic soccer. There is a sphere based older version
that is available up to version rcssserver3d-0.5.2. In this soccer version the agents on the
soccer field were simple rolling spheres.

This soccer simulation was the first step away from its two dimensional predecessor sim-
ulation into a three dimensional world. Since then SimSpark progressed to a more realistic
form of the soccer game. In recent versions players possess articulated bodies that resemble
humanoid robots.

1A repository of agent implementations from previous Robocups is available at http://www.uni-koblenz.de/

~murray/robocup/rc07/Binaries/binaries_3D.html
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3Getting Started

3.1 Download and Installation Instructions

This chapter explains how to install SimSpark on an Ubuntu Linux. It should work with slight
modifications on other distributions like Fedora, Suse and especially Debian system1.

1. Enable additional repositories

Depending on the distribution version you are using you might need to enable additional
repositories in order to install all required packages. Please refer to your system specific
documentation for details. In Ubuntu Linux these repositories are called Universe and
Multiverse.

To enable them you have to edit the /etc/apt/sources.list file and update the local
package database.

$ sudo gedit /etc/apt/sources.list

$ sudo apt-get update

In RPM based distributions you may need to enable further download locations or down-
load and install RPM packets manually. There are specialized search engines for RPM
packages available like

(a) http://packman.links2linux.de/ and

(b) http://rpmfind.net/

2. Install dependencies

SimSpark builds and depends upon the work of other software projects. We use the
CMake to configure and build SimSpark. Further required packages are:

(a) Ruby

(b) The Open Dynamics Engine (ODE)

(c) The Boost C++ Libraries

(d) Freetype

(e) Developer Image Library (DevIL)

(f) OpenGL

(g) SDL

1For more guides please visit Simspark Wiki: http://simspark.sourceforge.net/wiki/index.php/

Installation_on_Linux
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Some parts of SimSpark can be omitted from the build process therefore these packages
are optional:

(a) wxWidgets Library

(b) FMOD Sound Library

(c) Latex (pdflatex): to generate developers manual

(d) Doxygen: to generate API documentation

$ sudo apt-get install g++ subversion cmake libfreetype6-dev libode0-dev libsdl-dev
ruby1.8 ruby1.8-dev libdevil-dev libboost-dev libboost-thread-dev libboost-regex-dev

3. Check out the source from the source forge SVN repository

The SimSpark source is hosted in a SVN repository at sourceforge.net. In order to build
the source first download the current version, this is called check out in SVN terminol-
ogy:

$ svn co https://simspark.svn.sourceforge.net/svnroot/simspark simspark

Downloaded package contains following packages:

• Simspark: this package contains the core simulation engine and can be used to create
different kinds of simulation. It is not soccer specific

• Rcssserver3D: implements soccer simulation 3d on top of simspark engine. This
package depends on simspark package

• Rsgedit: simspark simulator with graphics user interface

• Simspark utilities: it’ll contain some additional tools for simspark core package like:

– Gendot: generates a graphviz dot file showing the zeitgeist class hierarchy, in-
cluding all classes that are visible at runtime

– Monitorspark: external monitor implementation.
– Sampleagent: sample of simple behaviour implementation
– Samplesim: sample of simple simulation

4. Configure, generate build files and install the soccer server

You can build this packages using CMake build system (version 2.6 or higher should be
installed on your system). CMake can generate different kinds of native build files for your
system (e.g. Unix Makefiles, Eclipse CDT 4.0 project files, Visual Studio project files). You
can generate build files using CMake command-line or GUI interfaces.

The configure cmake accepts a number of options that you can add to it’s command line:

(a) --help lists all available configure options. There are some more available that
would exceed the scope of this manual. Note: The list of all available generator for
your OS platform are at the end of printout.

(b) --G <generator-name> specify a makefile generator.

(c) -DCMAKE INSTALL PREFIX:PATH=/some/path defines the path where the make install
will later install the SimSpark executable and resources into your system. If omitted
it defaults to /usr/local/lib

Every package has the same installation procedure. Change in to the top level package
directory (spark, rcssserver3D etc.). We recommend to create a directory to hold your
build files. Change directory to the directory you created in the previous, run cmake build
system, start the build process and install the server into your system.

For soccer simulation, you’ll need at least simspark (build at first) and rcssserver3d pack-
ages. Other packages are optional (Rsgedit and Simspark-utilities).

6



$ cd sserver/trunk/spark/

$ mkdir build

$ cd build

$ cmake ..

Note: Optionally, now you can run ccmake . to edit the build settings (for example the
installation directory).

$ make

$ sudo make install

5. Make sure the linker can find your shared libraries if you changed the install prefix as
described above with the -DCMAKE INSTALL PREFIX:PATH option.

$ sudo gedit /etc/ld.so.conf

Add your install prefix if it isn’t already there, save and close.

$ sudo ldconfig

6. Run the simulation

$ rcsoccersim3d

7. Optionally

• Documentation
After creating build files, there will be two extra targets (if you have their require-
ments): doc and pdf. If you want to create API documentation (using doxygen) you
can run make doc .
$ sudo apt-get install doxygen $ sudo ldconfig

$ make doc

To create PDF documentation, run make pdf.
$ sudo apt-get install tetex-extra latex2html imagemagick $ sudo ldconfig

$ make pdf

• Rsgedit
Before build the rsgedit gui you need to install wxWidgets with OpenGL support.
The following commands download and installed the required packages:
$ sudo apt-get install libwxgtk2.8-dev $ sudo ldconfig

Build rsgedit with steps describe in step 4.

• Simspark utilities
Simspark utilities require Boost and Simspark library. Build with steps describe in
step 4.

3.2 An Example of a Simulation Run

This chapter gives shows how to start a simulation and connect an agent. The soccer simulation
is used to illustrate this. We assume that you have already compiled and installed the simulator
successfully as described in chapter 3.1.

To follow the example run given here it is best to work with several console windows where
you start and control the server monitor and agent separately.
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• Start the Server

The first step is to start the simulation server. To do this type rcssserver3d on the
console. The server is by default configured to run without internal monitor support and
to start the soccer simulation.

You should now see several diagnostic messages fly by, starting with the following greet-
ing:

rcssserver3d, a monolithic simulator 0.6.x
Copyright (C) 2004 Markus Rollmann,
Universitt Koblenz.
Copyright (C) 2004, The RoboCup Soccer Server Maintenance Group.

Type ’--help’ for further information

The output ends with the confirmation that the server now listens on the default port
3100 for agents and 3200 for external monitors.

(NetControl) ’AgentControl’ setting up a server on TCP:3100
(NetControl) ’MonitorControl’ setting up a server on TCP:3200
(SimulationServer) entering runloop
(SimulationServer) running in single thread

We are now ready to connect a monitor to the simulator.

• Start the Monitor

The monitor is a separate application that connects to the server and displays the sim-
ulated scene. To start the default monitor type rcssmonitor3d. By default the monitor
is configured to connect to a simulation on the local machine. You can however run the
server and monitor on different machines.

When the monitor starts up you should again see some diagnostic messages fly by. The
output ends with the confirmation that the monitor tries to connect to the server. If
successful it will then open a separate window and display the simulated scene, please
see figure 3.1.

(SimulationServer) init
(NetClient) ’SparkMonitorClient’connecting to TCP 127.0.0.1:3200
(NetClient::SendMessage) ERROR: send returned error ’Broken pipe’
(SimulationServer) entering runloop
(SimulationServer) running in single thread

After the monitor started you are able to use the mouse and keyboard to navigate the
scene. Please refer to chapter 5 for a complete list of the available key bindings.

You can use the numbers of the keypad to navigate to different positions on the playing
field. The view after pressing 3 is given in figure 3.2. The movement of the camera is
controlled with the arrow keys, PgUp and PgDown. Press the left mouse button and move
the mouse to change the camera view.

• Connect an agent

The next step is to connect one or more agents to the simulation. To do this please change
to a separate console window and type rcssagent3d. This starts the example agent that
is included with SimSpark.
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Figure 3.1: View of the soccer simulation after the simulator has just been started.

Figure 3.2: Change the view by pressing ’3’ on the keyboard.
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Figure 3.3: An agent connected to the server.

Figure 3.4: Moving around on the field using the arrow keys, PgUp, PgDown, and the mouse (with left mouse
button pressed).
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You should now see a humanoid robot appear on the field, as in figure 3.3. This default
agent does nothing useful but waving his arms.

• Start the simulation

The next step is to start the soccer game. To do this please change back to the monitor
window and press ’k’. The simulation time now start running and the game state changes
to BeforeKickOff, please compare to figure 3.5.

Figure 3.5: Press ’k’ to start the game. The play mode will switch to ’KickOff Left’ and the time will advance.
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4Simspark

In this section you find information about the messages that are sent from the server to the
agent (perceptors) and vice versa (effectors). A description of the perceptors and effectors can
also be found in [Sch08] (German), [Lea07] (Slovak), and to some part in [Vor06] (concerns
the older ”spheres” simulation though, so some information is outdated).

4.1 General message format

Messages from and to the server use S-expressions (short for symbolic expressions) as their
basic data structure. The basic idea of S-expressions is very simple: they are either strings, or
lists of simpler S-expressions. They are probably best known for their use in the Lisp family of
programming languages where they are used for both code and data.

An advantage of using S-expressions over other data formats is that it provides an easy to
parse and compact syntax that is to some extent still readable by humans for debug purposes.
It is further easy to add new sensors to the messages as the parser on the client side can easily
ignore unknown parts.

Messages exchanged between client and server use the default ASCII character set, i.e.
one character is encoded in a single byte. Further each individual message is prefixed with the
length of the payload message. The length prefix is a 32 bit unsigned integer in network order,
i.e. big endian notation with the most significant bits transferred first.

4.2 Perceptors

Perceptors are used to sense the environment of the agent. They are sent from the server to each
agent and contain agent specific and perceptor specific information about the environment and
the agent itself. There are perceptors that are available to all kinds of simulations and soccer
specific perceptors.

4.2.1 General Perceptors

The perceptors described in this subsection are available to all types of simulation. In other
words they are not specific to the soccer environment.
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HingeJoint Perceptor

A hinge joint perceptor receives information about the angle of the corresponding single axis
hinge joint. It contains the identifier “HJ”, the name of the specific perceptor (see robot descrip-
tions 8) and the position angle of the axis in degrees. Zero degrees corresponds to straightly
aligned bodies. The position angle of each hinge joint perceptor is sent every cycle. A hinge
joint is displayed in figure 4.1.

Figure 4.1: Hinge Joint ( [Smi06])

Message format: (HJ (n <name>) (ax <ax>))

<name> - the name of the corresponding hinge joint

<ax> - the current position angle in degrees and an accuracy of two digits

Example message: (HJ (n laj3) (ax -1.02))

Noise model: None

UniversalJoint Perceptor

A universal joint perceptor receives information about the two angles of the corresponding two
axis universal joint. It contains the identifier “UJ”, the name of the specific perceptor (see robot
descriptions 8) and the position angles of the two axes in degrees. Zero degrees corresponds to
straightly aligned bodies. Like the hinge joint, this perceptor is also a every-cycle-perceptor. A
universal joint is displayed in figure 4.2.

Message format: (UJ (n <name>) (ax1 <ax1>) (ax2 <ax2>))

<name> - the name of the corresponding universal joint

<ax1> <ax2> - the current position angles of the two axes in degrees and an accuracy of two digits

Example message: (UJ (n laj1 2) (ax1 -1.32) (ax2 2.00))

Noise model: None
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Figure 4.2: Universal Joint ( [Smi06])

GyroRate Perceptor

The gyro rate perceptor delivers information about the change in orientation of a body with
respect to the global coordinate system. The message contains the “GYR” identifier, the name of
the body to which the gyro perceptor belongs and three rotation angles. These rotation angles
describe the change rates in orientation of the body during the last cycle. In other words the
current angular velocities along the three axes of freedom in degrees per second (deg/s). To
keep track of the orientation of the body, the information to each gyro rate perceptor is sent
every cycle.

Message format: (GYR (n <name>) (rt <x> <y> <z>))

<name> - the name of the body containing the gyro rate perceptor (see robot descriptions 8)

<x> <y> <z> - the current angular velocities along the three axes of freedom of the parent body in
deg/s and an accuracy of two digits

Example message: (GYR (n torso) (rt 0.01 0.07 0.46))

Noise model: None

Accelerometer

This perceptor measures the proper acceleration it experiences relative to free fall. As a con-
sequence an accelerometer at rest relative to the Earth’s surface will indicate approximately
1g upwards. To obtain the acceleration due to motion with respect to the earth, this “gravity
offset” should be subtracted. The message contains the “ACC” identifier, followed the name of
the body the accelerometer belongs to and the current acceleration values along the three axes
of freedom.

Message format: (ACC (n <name>) (a <x> <y> <z>))

<name> - the name of the body containing the accelerometer (see robot descriptions 8)

<x> <y> <z> - the current acceleration along the three axes of freedom in m/s2 and an accuracy of
two digits

Example message: (ACC (n torso) (a 0.00 0.00 9.81))

Noise model: None
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ForceResistance Perceptor

This perceptor informs about the force that acts on a body. After the identifier “FRP” and the
name of the body (see robot descriptions 8) the perceptor message contains two vectors. The
first vector describes the point of origin relative to the body itself and the second vector the
resulting force on this point. The two vectors are just an approximation about the real applied
force. The point of origin is calculated as weighted average of all contact points to which the
force is applied, while the force vector represents the total force applied to all of these contact
points. The information to a force resistance perceptor is just sent in case of a present collision
of the corresponding body with another simulation object. If there is no force applied, the
message of this perceptor is omitted.

Message format: (FRP (n <name>) (c <px> <py> <pz>) (f <fx> <fy> <fz>))

<name> - the name of the body, to which the force resistance perceptor belongs (see robot
descriptions 8)

<px> <py> <pz> - the local coordinates of the point of origin of the applied force in meter and an
accuracy of two digits

<fx> <fy> <fz> - the components of the force vector with an accuracy of two digits, while the length
of the force vector represents the given force in newton (kg ·m/s2)

Example message: (FRP (n lf) (c -0.14 0.08 -0.05) (f 1.12 -0.26 13.07))

Noise model: None

Touch Perceptor

This perceptor works like a bumper that is triggered if the body to which it is mounted collides
with another simulation object. The perceptor always reports its own unique name. This allows
the use of more than one touch perceptor per agent. Further the value 0 meaning no collision
detected or 1 meaning collision detected is given.

Message format: (TCH n <name> val 0|1)

Example message: (TCH n bumper val 1)

4.2.2 Soccer Perceptors

The following perceptors are soccer specific and only available in the soccer simulation.

Vision Perceptor

Your robots possess a special omnicam with some smart image processing software attached :).
If using the regular vision perceptor, robots have a 360 degrees view. With the restricted vision
perceptor (which became the default in version 0.5), the robot’s field of view is restricted to 120
degrees (horizontally as well as vertically). The direction of the view (pan and tilt) is always
relative to the current orientation of body containing the camera and can be changed with the
pantilt effector. The camera can pan to any angle and tilt around the horizontal plane.

The vision perceptor delivers a list of seen objects, where objects are either body parts of
robots, the ball, or markers on the field. Currently there are 8 markers on the field: one at each
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corner point of the field and one at each goal post. With each visible object you get a vector
described in spherical coordinates. In other words the distance together with the horizontal
and latitudal angle to the center of a visible object (see figure 4.3).

Figure 4.3: Polar coordinates as supplied by the 3D Soccer Server

Contrary to 2D soccer simulation, the vision system does not deliver object velocities. Ob-
jects can be occluded by other objects (this is not completely implemented yet). All distances
and angles are given relative to the position and orientation of the camera.

The noise parameters of the vision system are as follows:

• A small calibration error is added to the camera position. For each axis, the error is
uniformly distributed between −0.005m and 0.005m. The error is calculated once and
remains constant during the complete match.

• Dynamic noise normally distributed around 0.0:

- distance error: σ = 0.0965 (also, distance error is multiplied by distance/100)

- horizontal angle error: σ = 0.1225

- latitudal angle error: σ = 0.1480

A vision message is started with “See” followed by a list of seen objects. While the ball and
the markers on the field are simple objects described through just one position vector, a player
is a more complex object and needs a tighter description as well as additional information like
teamname or player number. Therefore a player is described through the name of it’s team, the
player number and one or more position vectors to different body parts. According to the hyper
complex image processing software attached to the vision system :) the visual information are
just percepted every third cycle.

In older server versions players are also described with just one position vector. In this case
the message format to the player differs as shown by the simple player message format below.

Message format: (See +(<name> (pol <distance> <angle1> <angle2>)) +(P (team <teamname>)
(id <playerID>) +(<bodypart> (pol <distance> <angle1> <angle2>))))

Simple player format: (P (team <teamname>) (id <playerID>) (pol <distance> <angle1> <angle2>))

<name> - the name of the visible object (see table 4.1 for possible values)

<distance> - the distance to the visible object in meters and an accuracy of two digits

<angle1> <angle2> - the horizontal and latitudal angles to the visible object in degrees and an accuracy
of two digits

<teamname> - the name of the team, to which the seen player belongs

<playerID> - the player number of the seen player

<bodypart> - the name of the body part (see table 4.2 for possible values)
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Simple visible object Identifier
Ball B
Flags F1L, F2L, F1R, F2R
Goalposts G1L, G2L, G1R, G2R

Table 4.1: Simple visible objects.

Visible body part Identifier
Head head
Right lower arm rlowerarm
Left lower arm llowerarm
Right foot rfoot
Left foot lfoot

Table 4.2: Visible body parts of the Nao robot.

Example message: (See (G2R (pol 17.55 -3.33 4.31)) (G1R (pol 17.52 3.27 4.07)) (F1R (pol 18.52
18.94 1.54)) (F2R (pol 18.52 -18.91 1.52)) (B (pol 8.51 -0.21 -0.17)) (P (team
teamRed) (id 1) (head (pol 16.98 -0.21 3.19)) (rlowerarm (pol 16.83 -0.06 2.80))
(llowerarm (pol 16.86 -0.36 3.10)) (rfoot (pol 17.00 0.29 1.68)) (lfoot (pol
16.95 -0.51 1.32))) (P (team teamBlue) (id 3) (rlowerarm (pol 0.18 -33.55 -20.16))
(llowerarm (pol 0.18 34.29 -19.80))))

Noise model: Calibration error and dynamic noise

AgentState Perceptor

The agent state perceptor gives information about the internal state of the agent. It reports
information about the current battery status and the temperature of the agent.

Message format: (AgentState (temp <degree>) (battery <percentile>))

Example message: (AgentState (temp 48) (battery 75))

GameState Perceptor

The game state perceptor delivers several information about the actual state of the soccer game
environment. A game state message is started with the “GS” identifier, followed by a list of
different state information. Currently just the actual play time and play mode are transmitted,
while the play time starts from zero at kickoff of either half and is given as a floating number in
seconds. The possible play modes are listed in table 4.3. For an up to date list of all play modes
refer to (./plugin/soccer/soccertypes.h).

Message format: (GS (t <time>) (pm <playmode>))

<time> - the current play time in seconds and two digits

<playmode> - the current play mode of the soccer game (see table 4.3 for possible values)

Example message: (GS (t 0.00) (pm BeforeKickOff))
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Play mode Description
BeforeKickOff before the match
KickOff Left kick off for the left team
KickOff Right kick off for the right team
PlayOn regular game play
KickIn Left kick in left team
KickIn Right kick in right team
CORNER KICK LEFT corner kick left team
CORNER KICK RIGHT corner kick right team
GOAL KICK LEFT goal kick for left team
GOAL KICK RIGHT goal kick for right team
OFFSIDE LEFT offside for left team
OFFSIDE RIGHT offside for right team
GameOver after the match
Goal Left goal scored by the left team
Goal Right goal scored by the right team
FREE KICK LEFT free kick for left team
FREE KICK RIGHT free kick for right team
NONE no or unknown play mode

Table 4.3: Possible play modes.

Hear Perceptor

Agent processes are not allowed to communicate with each other directly, but agents may
exchange messages via the simulation server. For this purpose agents are equipped with the so-
called hear perceptor, which serves as an aural sensor and receives messages shouted by other
players. Actually the underlying model stems from the 2D Soccer Simulation and has been
integrated in the 3D simulator since server version 0.4. Percepts have the following format:

Message format: (hear <time> ’self’|<direction> <message>)

<time> - the play time when the given message was heard in seconds

<direction> - the horizontal direction where the sound was located, relative to the head in degrees

<message> - up to 20 characters, which may be taken from the ASCII printing character subset
[0x20, 0x7E] except the white space character (t) and the normal brackets ( and )

Example message: (hear 12.30 self helloworld)

The source is either the relative direction in degrees where the sound was located, or self if
the player has a statement by his own. Message may consist of characters from the ASCII print-
ing character subset [0x20, 0x7E], among which the alphanumerical symbols and mathematical
operators can be found for example. Three characters from this range are, however, excluded:
the white space character (t) and the normal brackets ( and ).

The hear perceptor comes up with some restrictions:

1. Messages are restricted to a maximal length (currently 20 bytes).

2. Messages shouted from beyond a maximal distance (currently 50.0 meters) cannot be
heard.

3. The number of messages which can be heard at the same time is bounded: Each player
has the maximal capacity of one heard message by a specific team every two sensor cy-
cles (thus every 0.4 seconds per team). There are separately tracked capacities for both
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teams, because teams should not be able to block the hear perceptors of their opponents
by shouting permanently. If more messages from players of one team arrive, they are
processed in the order of arrival; the remaining messages are simply not heard.
Messages shouted by oneself, though, can always be noticed [Vor06].

4.3 Effectors/Actuators

Effectors are used to act within the simulation. They are sent to the server to change the game
state accordingly. There are effectors that are available to all kinds of simulations and soccer
specific effectors.

4.3.1 General Effectors

The effectors described in this subsection are available to all types of simulation. In other words
they are not specific to the soccer environment.

Create Effector

When an agent initially connects to the server it is invisible and cannot take affect a simulation
in any meaningful way. It only possesses a so called create effector.

An agent uses this effector to advice the server to construct it according to a scene descrip-
tion file it passes as a parameter. This file is used to construct the physical representation and
all further effectors and preceptors.

Message format: (scene <filename>)

Example message: (scene rsg/agent/nao/nao.rsg)

After the agent representation is constructed in the server the agent should do further
simulation specific setup. For example in the soccer simulation each agent is required to register
to a team and acquire a unique player number. For these tasks usually a special effector like the
SoccerInitEffector is used.

HingeJoint Effector

A hinge joint effector represents an actuator, related to a single axis hinge joint. It is able to
move the joint along the specific axis of freedom. The first parameter is the name of the hinge
joint effector (see robot descriptions 8). The second parameter specifies the angular change
rate of the given hinge joint in degrees per cycle (deg/cycle). If the requested angle change
needs more force than the maximum allowed force for the joint, then the maximum force will
be used instead.

Message format: (<name> <ax>)

<name> - the name of the corresponding hinge joint

<ax> - the angular change rate in deg/cycle (max joint speed 7.035deg/cycle)

Example message: (lae3 5.3)
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UniversalJoint Effector

A universal joint effector represents an actuator, related to a two axes universal joint. It is able
to move the joint along the two specific axis of freedom. It starts with the name of the universal
joint effector (see robot descriptions 8), followed by the two angular velocities in degrees per
cycle. If the requested angle change needs more force than the maximum allowed force for the
joint, then the maximum force will be used instead.

Message format: (<name> <ax1> <ax2>)

<name> - the name of the corresponding universal joint

<ax1> <ax2> - the angular change rates in deg/cycle (max joint speed 7.035deg/cycle)

Example message: (lae1 2 -2.3 1.2)

4.3.2 Soccer Effectors

The following effectors are soccer specific and only available in the soccer simulation.

Init Effector

The init command is sent once for each agent after the create effector sent the scene command.
It registers this agent as a member of the passed team with the passed number. All players
of one team have to use the same teamname and different numbers. If an agent sends 0 as
playernumber, the number is assigned automatically by the server to the next free number. The
side on which a team starts to play depends on which team connected first.

Message format: (init (unum <playernumber>)(teamname <yourteamname>))

<playernumber> - the player number of the player

<yourteamname> - the name of the player’s team

Example message: (init (unum 1)(teamname FHO))

Beam Effector

The beam effector allows a player to position itself on the field before the game starts and after
a goal was scored. The x and y coordinates define the position on the field with respect to
the coordinate system of figure 7.2. The rot value allows to define the horizontal direction of
the player. Zero degrees points to positive x axis, 90 degrees to positive y axis. For reasons of
simplification the position and rotation of the team playing from right to left is point reflected
on the field center.

Message format: (beam <x> <y> <rot>)

<x> <y> - target position on the soccer field in meter

<rot> - Z-rotation angle on target position in degrees

Example message: (beam 10.0 -10.0 0.0)

21



Say Effector

The say effector permits communication among agents by broadcasting messages. In order to
say something, the following command has to be employed:

Message format: (say <message>)

<message> - up to 20 characters, which may be taken from the ASCII printing character subset
[0x20, 0x7E] except the white space character (t) and the normal brackets ( and )

Example message: (say helloworld)

For further details and restrictions please see Section 4.2.2, about the hear perceptor, the dual
sensor to this actuator.

4.3.3 Older Version Effectors

The effectors in this subsection have been available in older versions of the simulation and are
now no longer available

Drive Effector

To use the omnidrive of the agent, you have to use the so called ”DriveEffector”, which takes a
cartesian vector (x y z) with a maximum length of 100 units. The x-coordinate points towards
the opponents team side of the field, z points up. With the DriveEffector, you set a kind of motor
force, i.e. if you want to drive full speed for a while, it is sufficient to use the DriveEffector
*once*. The force you set is applied at each simulator step until you change it again. The
DriveEffector works reliable, there is a small error for forces along each axis (each up to 2% of
the applied force). The error is normally distributed around 0.0.

Using the omnidrive consumes battery. You get to know of battery states by reading the
AgentStatePerceptor. If the battery is empty, the omnidrive will stop working. It is also possible
to push away other robots. Using this feature to push away opponents is discouraged :).

Message format: (drive <x> <y> <z>)

Example message: (drive 20.0 50.0 0.0)

Kick Effector

To move the ball, you have the option of simply using the robots to push the ball into a desired
direction, or you can use the kickeffector to kick the ball. Originally, we did not intend to create
an artificial kickeffector. However, to make use of the 3rd dimension, this was the easiest way.
It is intended to remove this kind of kick effector in future versions (not this years’ competition)
in favor of a real physical device.

The kickeffector can accelerate the ball radially away from the robot body. The kickeffector
takes an angle as first argument. This is the latitudal angle (in degrees) for accelerating the ball.
It is restricted to a number between 0 and 50. The second argument indicates the kicking power
and this is a number between 0 and 100. It is interpreted as the percentile of the maximum
available power. The kickeffector adds a force and a torque to the ball. This happens over
a fixed number of simulation steps. Currently 10 cycles are used. This corresponds to 1/10s
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simulation time. To kick the ball, the ball has to be very close to the robot, i.e. it has to be
within the so called kickable margin of the player. Currently 0.04m are configured.

You cannot change the kicking angle in the horizontal plane. This means that you have to
move the robot so that it can kick into the desired direction. Right now, the kickeffector is not
very strong, because something like an offside rule is missing. It should also not be possible to
move other robots by kicking the ball against them anymore. (at least not very much :) Like
the DriveEffector, the kickeffector does only work if the robot touches the soccer field.

The kickeffector noise has the following parameters:

• The angle error in the x-y plane is quite low and normally distributed around 0.0 with
σ = 0.02.

• The latitudal angle error is normally distributed around 0.0. This angle error is low with
σ = 0.9 at both extreme positions, i.e. 0 and at 50 degrees. Towards the middle of the
range the angle error gets higher with sigma up to 4.5.

• The kick power error is normally distributed around 0.0 with σ = 0.4

Message format: (kick <angle> <power>)

Example message: (kick 20.0 80.0)

Catch Effector

The goalie (agent number 1) is the only player with the ability to catch a ball. The goalie can
catch the ball in play mode ’playe on’, if the ball is inside the penalty area and close to the
robot, i.e. it has to be within the so called catch margin of the player. The current value of
catch margin is 2 meters.

The catcheffector puts the ball in front of the goalie on the ground and moves players away
that are closer than 2 meters to the goalie by 5 meters.

Message format: (catch)

Example message: (catch)

4.4 Simulation Update Loop

SimSpark implements a simple internal event model that immediately executes every action
received from an agent. It does not try to compensate any network latency or compensate for
different computing resources available to the connected agents.

A consequence is that SimSpark currently does not guarantee that events are reproducible.
This means repeated simulations may have a different outcome, depending on network delays
or load variations on the machines hosting the agents and the server.

A benefit of the simple structure however are speed gains that make it interesting for ma-
chine learning tasks as in these setups an often large number of different agent and simulation
configurations are repeatedly tested.

Further the SimSpark main loop is highly customizable as it is entirely build upon plugins
we call simcontrol nodes. Simcontrol nodes are registered to the simulation server. They act in
response to control events. The simulation server repeatedly generates these as it executes an
abstracted the main loop.
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The event types are an ’init’ event once when the simulation server starts and a ’done’ event
on shutdown. The main then loop cycles repeatedly through the ’start cycle’, ’sense agent’, ’act
agent’ and ’end cycle’ events.

Apart from generating control events the simulation server advances the simulation time
passed in the last cycle. Depending on its configuration it either does this in discrete time
quanta or in one single step.

A simcontrol node further can take responsibility for the time measurement, for example
to synchronize the simulation time with the real time used to render the scene. Otherwise the
simulation is stepped a fixed time step as often as possible.

In this way all management tasks are implemented as plugins to the simulation server. This
involves the agent management, monitor management, rendering, mouse and keyboard input
and network code.

This setup allows us to configure the simulation at runtime as either a monolithic appli-
cation that does both simulation and rendering or as a dedicated simulation server that defers
rendering to a remote monitor application.

4.4.1 Single-threaded Timer

In the singled-threaded mode, the main loop cycles repeatedly through the ‘start cycle’, ‘sense
agent’, ‘act agent’ and ‘end cycle’ events( see Figure 4.4). There are two noticeable details:

• Each cycle duration is 20ms, if the simulation is fast than real time, it will wait; otherwise,
if the simulation is very slow, it will run many physics updates once without interaction
with agents. If the simulation is very slow, it will give up to catch up the real time and
print warning. So you may have problem while the computer is not fast enough.

• The ‘act agent’ event is followed after ‘sense agent’, the action which the agent send
according to nth cycle will be realized in the (n + 1)th cycle, i.e. the action has been
delayed one cycle. See for Figure 4.5 explanation.

4.4.2 Multi-threaded Timer

In modern time, computers have more than one CPU or dual cores in one CPU. This im-
prove the performance greatly, but only the multi-threaded program can benefit. SimSpark
has an experimental multi-threaded running loop, it can be switched on simply by change the
simulationServer.setMultiThreads(false) to simulationServer.setMultiThreads(true)
in the spark.rb file.

The implementation of multi-threaded loop is based on two conditions. First, every Sim-
ControlNode response for different parts of the simulation, they perform one by one in the
singled-threaded mode, but they can run in parallel. Second, there is a active scene which
stores the whole simulation data in a tree. The physics engine and SimControlNode interact
through the active scene. As we know, the physics computation is the most time-consuming,
and the physics engine does not need to access the active scene during physics computation.
So the physics computation and SimControlNodes can run in parallel. At last, we get the multi-
threaded simulation loop as Figure 4.6. Note that the agent’s action are also delayed one cycle
in the multi-threaded loop.
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Figure 4.4: Single-threaded loop UML sequence diagram

Figure 4.5: Synchronization between SimSpark and agent
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Figure 4.6: Multi-threaded loop UML sequence diagram, note that each SimControlNode runs in separated
thread.
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5Rcssmonitor3d

This chapter gives an overview about the available monitor and log player setups available in
SimSpark, their configuration and usage.

5.1 Internal Monitor

The internal monitor implementation is part of the SimSpark server. It is enabled in the
simspark.rb setup script by enabling the rendering and input plugins of the server. To do
so please uncomment the lines sparkSetupRendering() and sparkSetupInput(), i.e. remove
the leading ’#’ comment markers.

5.2 External Monitor

The external monitor implementation is called rcssmonitor3d. It either connects to a running
SimSpark instance or replays a simulation run from a log file.

5.3 Playing Log files

The monitor is able to replay a simulation that is recorded in a log file. It accepts a --logfile
parameter on its command line that enables the log player mode.

5.4 Key Assignments

The monitor accepts a number of commands by key or mouse. These commands either control
the movement of the camera or send commands back to the server to control the simulation.
The soccer simulation uses these commands to implement the controls for the human referee.

The list of accepted default command short cuts is given in table ??. These short cuts are
configured in the two setup scripts bindings.rb and soccerbindings.rb that the SimSpark
monitor reads on start up.

”user-manual”

27



Table 5.1: Key assignments for rcssmonitor3d

key function
q quit monitor
left mouse button mouse look
right mouse button move camera up
keypad plus move camera up
pageup move camera up
pagedown move camera down
keypad minus move camera down
a move camera left
left arrow move camera left
d move camera right
right arrow move camera right
w move camera forward
up arrow move camera forward
s move camera backward
down arrow move camera backward
1 camera to left goal
2 camera to left corner
3 camera to middle left
4 camera to middle right
5 camera to middle
6 camera to right corner
7 camera to right goal
l free kick left
r free kick right
k kick off
b drop ball
m move agent
n shoot ball
x move ball
p pause the playback of a log file
f move forward in the log file
b move backwards in the log file
l playback the log file
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6Rcssagent3d

This chapter introduces Rcssagent3D, the demo agent implementation available for SimSpark.

6.1 Behaviors

Rcssagent3D is a demo agent implementation for use with the SimSpark server. It serves as
a testbed for agent implementation. It implements all low level details of connecting and
communicating with the server. It further implements an abstract run loop. The behavior of
this agent skeleton is implemented using plugins. On of these plugins is configured and installed
at run time.

6.1.1 SoccerbotBehavior

The SoccerbotBehavior is a minimal example of an agent that acts on a soccer field and
controls our current humanoid soccer bot model. It demonstrates reading preceptor values and
controlling the robot with the installed effectors in a control loop. The implemented behavior
resembles the classic hello world program in a way. It moves up the arms of the robot and
repeatedly waves hello.

6.2 How to change Behaviors?

The different Behaviors of Rcssagent3D are encapsulated in classes that derive from the Behavior
class. Classes of this type implement an interface with two functions that each return a com-
mand string that is then send to the SimSpark server.

The first implemented function is Init. This function is called once when the agent initially
connected to the server. It is typically used to construct the agent representation in the server
with the help of the scene effector and to move the agent to a suitable start position in the
simulation.

The second implemented function is called Think. This function is called every simulation
cycle. As a parameter it receives the sensor data as reported from the server in the last cycle.
This function should implements the main behavior run loop of each agent.
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7Simulations

This chapter is about the different simulations available with SimSpark. In particular the soccer
simulation is described in detail.

7.1 The Soccer Simulation

We implemented a simulation for SimSpark where two teams of up to 6 humanoid robots play
soccer against each other. Figure 7.1 shows a running soccer simulation with 12 playing robots
of two teams. This seemingly simple setup poses a challenge to agent implementers on several
levels.

In order to act in a meaningful way on the playing field the first challenge is to localize
your agent on the playing field. To support this the agents perceive their relative position to a
set of landmarks, called flags on the playing field. These flags mark corner and goal spots of
the playing field. Further the relative location of other players and the ball on the soccer field
are perceived.

If an agent knows where it is and where it wants to be in the near future the next challenge
is to walk there. The structure of the humanoids are sufficiently realistic to make this non trivial.
Further the agent has to recover and get up if fallen over.

Another challenge is kicking the ball. As trivial this sounds to a human it is far from trivial
for a robot to keep its dynamic balance when kicking and controlling the direction of the ball.

Agents that are able to move and kick the ball need to cooperate and form a team. Only
the effective application of strategic and cooperative behaviors forms a successful team.

Most rules of the soccer game are judged by an automatic rule set that enforces the basic
soccer rule set. However more involved situations like detection unfair behavior still require a
human referee.

This soccer simulation is also used as the official competition environment for the 3D Soc-
cer Simulation League at RoboCup1 [KAK+97] [KA00] [BMO+05] [MBdSG+07]. The robots
used in the simulation at the competitions is currently the Nao robot as described in chapter 8.

1For more information on RoboCup, see also http://www.robocup.org/
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Figure 7.1: A screen shot of the soccer simulation with 6 vs 6 robots
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7.1.1 Environment and Objects on the Field

The dimensions of the soccer field are x = 18m by y = 12m. The center spot has a radius of
1.5 meters. Each goal is y = 2.1m by x = 0.6m with a height of z = 0.8m. The penalty area to
each goal is y = 3.9m by x = 1.8m. The soccer field is surrounded by a border of 10 meters in
each direction. Space outside this border area is not reachable by an agent. The soccer ball has
a radius of 0.042 meter and a mass of 26 grams. For an up to date list of all values please refer
to (./rcssserver3d/naosoccersim.rb).

At each corner of the soccer field, and at the goal posts, a distinctive flag is placed. The
positions of these flags are fixed and known to each agent. Agents perceive the relative position
of a subset of these flags and are therefore able to localize themselves on the soccer field. Agents
distinguish flags through their identifier as shown in figure 7.2. While the markers for the flags
are placed on ground level (z = 0.0m), the goalpost markers are placed on the top of each
goalpost at a height of z = 0.8m.

Figure 7.2: The dimensions of the soccer pitch and the object markers on the field as perceived by an agent

7.1.2 Rules Judged by the Automatic Referee

In order to run a soccer game several rules have to be applied. The automatic referee automat-
ically limits the time of each game half. It further keeps track which player was the last one to
touch the ball and checks whether the ball enters the goal penalty areas of the soccer field, or
was kicked into touch. Therefore it is able to detect and score goals, automatically judge ball
out and give kick in, corner kick in or goal kick to the correct team. The offside rule
is implemented but still experimental. During a free kick, the opponent team has to keep a
minimum distance of 1.3 meter, as well as 1.0 meter in case of a goal kick.
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With SimSpark Version 1.3 several new rules were applied to the automatic referee, in
order to ensure a smooth gameplay. The automatic referee tries to avoid mass collisions of
robots around the ball, as well as dead robots lying around on the field, blocking the game-
play. Furthermore it takes care that no team is blocking the own goal with more than a
certain amount of players. In all cases the robots causing the problem situation are auto-
matically beamed outside the soccer field. For an up to date list of all values please refer to
(./rcssserver3d/naosoccersim.rb).

7.1.3 Rules Judged by the Human Referee

The human referee acts through a connected monitor. It is responsible to give the kick off
command to start each game half. The automatic referee currently does not resolve situations
where the game got stuck if for example several player block each other and no one is able to
reach the ball. Further it does not detect fouls like the use of hands or otherwise behavior on
the soccer field.

In these cases the human referee can drop ball the ball, i.e. put it on a random location
on the playing field to unstuck the game. He is further able to command a free kick where
one player is able to shoot from a short distance to the goal.
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8The Robot Models

The soccer simulation provides different robot models. Below, we only describe the most ad-
vanced robot models that comes with the simulation package at this point in time. There are
some other models which you can find in the directory rcssserver3d/data/rsg/agent/, e.g.,
the soccerplayer.rsg, or the hoap2.rsg files. These are currently not in use in any simulation,
and considered experimental.

Besides that, work is in progress on other robot models and will be described here when
usable. We plan to integrate an improved model of the HOAP-2 robot from Fujitsu Automation,
and models of the VisiON 4g robot, and the Sony AIBO. For help on how to model new robots
for your simulation, please have a look at tutorials in the SimSpark Wiki at

http://simspark.sourceforge.net/wiki/.

8.1 Soccerbot

The Soccerbot is a humanoid robot with 20 degrees of freedom (DOF) as depicted in figure 8.3.
Its current dimensions are quite unrealistic for a real humanoid robot (see table 8.2) which is
due to instabilities in the physics simulation at the time the robot was first modeled. This is a
serious shortcoming of this robot model and should be changed. Another open issue is that the
joint ranges are not limited in the current model. This allows for very unrealistic movements
which can be fun to watch, but can lead to unfair behavior in a competition.

8.1.1 Equipment & Parameter

The Soccerbot has several kinds of sensors available. It uses a (omni-directional) vision sensor
(see section 4.2.2) to get information about objects in its environment1. In order to detect
the contact with the ground and the resulting force at the feet, it is equipped with a Force
Resistance Perceptor (see section 4.2.1) in each foot. It can sense the current simulation time
with a GameState Perceptor (see section 4.2.2) and the change in orientation of its torso with
a GyroRate Perceptor (see section 4.2.1). Furthermore, it has proprioceptive sensors that allow
to sense the angle of each joint (see sections 4.2.1 and 4.2.1 for HingeJoint Perceptor and
UniversalJoint Perceptor descriptions, respectively). An overview over the joint perceptors and
effectors is given in table 8.1.

1It is currently located in the center of the torso, which should be changed to be in the head.
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Figure 8.1: Frontal view of the Soccerbot in the simu-
lation

Figure 8.2: Side view of the Soccerbot in the simula-
tion
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Figure 8.3: Overview of the degrees of freedom of the Soccerbot
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Table 8.1: Perceptor and effector names

Connection between Joint type Perceptor name Effector name
Shoulder - body Universal joint laj1 2 raj1 2 lae1 2 rae1 2
Upper arm - shoulder Hinge joint laj3 raj3 lae3 rae3
Forearm - upper arm Hinge joint laj4 raj4 lae4 rae4
Hip - body Hinge joint llj1 rlj1 lle1 rle1
Upper leg - hip Universal joint llj2 3 rlj2 3 lle2 3 rle2 3
Lower leg - upper leg Hinge joint llj4 rlj4 lle4 rle4
foot - lower leg Universal joint llj5 6 rlj5 6 lle5 6 rle5 6

Figure 8.4 shows an example message which the agent receives from the server in a single
simulation cycle including sense information from all the perceptors of the agent.

The measurements of all body parts of the Soccerbot are listed in table 8.2.

(time (now 19.60))
(GYR (n torso) (rt -0.02 -0.01 -0.00))
(See

(F1L (pol 10.34 45.02 -16.70))
(F2L (pol 68.43 174.14 -2.56))
(F1R (pol 103.28 -86.10 -1.66))
(F2R (pol 123.46 -123.42 -1.43))
(G1L (pol 27.94 165.40 -6.96))
(G2L (pol 35.03 168.43 -5.56))
(G1R (pol 106.49 -104.59 -1.83))
(G2R (pol 108.57 -108.33 -1.80))
(B (pol 56.95 -122.42 -3.02))
(P (team teamRed) (id 2) (pol 10.50 -179.98 -0.07)))

(UJ (n laj1_2) (ax1 0.00) (ax2 90.63))
(UJ (n raj1_2) (ax1 -0.00) (ax2 90.63))
(HJ (n laj3) (ax 90.77))
(HJ (n raj3) (ax -90.77))
(HJ (n laj4) (ax 87.96))
(HJ (n raj4) (ax 88.40))
(HJ (n llj1) (ax 0.03))
(HJ (n rlj1) (ax -0.02))
(UJ (n llj2_3) (ax1 -0.03) (ax2 0.02))
(UJ (n rlj2_3) (ax1 -0.02) (ax2 0.01))
(HJ (n llj4) (ax 0.05))
(HJ (n rlj4) (ax 0.04))
(TCH (n lf) (val 1))
(UJ (n llj5_6) (ax1 0.05) (ax2 -0.01))
(TCH (n rf) (val 1))
(UJ (n rlj5_6) (ax1 0.04) (ax2 -0.00))

Figure 8.4: An example message from the server to the Soccerbot including information from all the sensors.
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Name Width Depth Height Mass
head 0.39m (radius) 0.3kg
torso 1.37m 0.96m 1.41m 1.8kg
left shoulder 0.445m 1.017m 0.536m 0.5kg
right shoulder 0.445m 1.017m 0.536m 0.5kg
left upper arm 0.445m 0.398m 0.506m 0.2kg
right upper arm 0.445m 0.398m 0.506m 0.2kg
left lower arm 0.445m 0.316m 0.6m 0.2kg
left lower arm 0.445m 0.316m 0.6m 0.2kg
left hip 0.273m 0.273m 0.2m 0.1kg
right hip 0.273m 0.273m 0.2m 0.1kg
left thigh 0.56m 0.56m 1.3m 0.25kg
right thigh 0.56m 0.56m 1.3m 0.25kg
left shank 0.56m 0.56m 0.964m 0.25kg
right shank 0.56m 0.56m 0.964m 0.25kg
left foot 0.6m 0.956m 0.095m 0.1kg
right foot 0.6m 0.956m 0.095m 0.1kg

Table 8.2: Physical properties of the Soccerbot.

8.2 Nao

The Nao humanoid robot manufactured by Aldebaran Robotics. This is the robot currently used
in the competitions of the 3D Soccer Simulation League at RoboCup. Its height is about 57cm
and its weight is around 4.5kg. Its biped architecture with 22 degrees of freedom allows Nao to
have great mobility. The rcssserver3D can simulate the Nao robot nicely, see Figure 8.5.

(a) real robot (b) virtual robot

Figure 8.5: The Nao humanoid robot.
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8.2.1 Equipment

This section is quite important to the agent development for the specific perceptors and effectors
used to represent this robot. The Nao robot model is equipped with a powerful selection of the
perceptors and effectors described in chapter 4, to provide a widespread information base for
agent development.

The Nao robot possess a gyroscope and a accelerometer, to keep track of radial as well as
axial movement of itself in the three dimensional space. Both of them are located in the center
of the torso, therefore the only available identifier to this two perceptors is “torso”.

In order to detect the contact with the ground and other objects in the simulation, one
force resistance perceptor in each foot indicates the actual pressure on it. Possible identifiers
are “lf” and “rf”, for the left and right foot.

To get information about different objects in its environment the Nao robot possess a re-
stricted vision perceptor in the center of its head. Note: The visual perception is described in a
right hand system facing the x-axis.

For communication purposes it is equipped with a say effector and the corresponding hear
perceptor.

The position of each joint is represented by a hinge joint perceptor and manipulable
through the corresponding hinge joint effector. For a complete list of all available joints of
the Nao robot and their corresponding identifiers please refer to table 8.3. The arrangement of
the joints and their relative orientation is shown in figure 8.6.

The gamestate perceptor is used to inform about the actual play time and play mode.
Figure 8.7 shows an example message which the agent receives from the server in a single

simulation cycle including sense information from all the perceptors of the agent.

No. Description Hinge Joint Perceptor name Effector name
1 Neck Yaw [0][0] hj1 he1
2 Neck Pitch [0][1] hj2 he2
3 Left Shoulder Pitch [1][0] laj1 lae1
4 Left Shoulder Yaw [1][1] laj2 lae2
5 Left Shoulder Roll [1][2] laj3 lae3
6 Left Arm Yaw [1][3] laj4 lae4
7 Left Hip YawPitch [2][0] llj1 lle1
8 Left Hip Roll [2][1] llj2 lle2
9 Left Hip Pitch [2][2] llj3 lle3

10 Left Knee Pitch [2][3] llj4 lle4
11 Left Foot Pitch [2][4] llj5 lle5
12 Left Foot Roll [2][5] llj6 lle6
13 Right Hip YawPitch [3][0] rlj1 rle1
14 Right Hip Roll [3][1] rlj2 rle2
15 Right Hip Pitch [3][2] rlj3 rle3
16 Right Knee Pitch [3][3] rlj4 rle4
17 Right Foot Pitch [3][4] rlj5 rle5
18 Right Foot Roll [3][5] rlj6 rle6
19 Right Shoulder Pitch [4][0] raj1 rae1
20 Right Shoulder Yaw [4][1] raj2 rae2
21 Right Shoulder Roll [4][2] raj3 rae3
22 Right Arm Yaw [4][3] raj4 rae4

Table 8.3: Available hinge joints of Nao robot.
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Figure 8.6: The joints of Nao robot.
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(time (now 93.60))
(GS (t 0.00) (pm BeforeKickOff))
(hear 0.00 self 1000-501)
(GYR (n torso) (rt -0.35 -0.36 -0.01))
(ACC (n torso) (a 0.20 -0.20 9.79))
(HJ (n hj1) (ax 0.33))
(HJ (n hj2) (ax -3.31))
(See

(G2R (pol 17.55 -3.33 4.31))
(G1R (pol 17.52 3.27 4.07))
(F1R (pol 18.52 18.94 1.54))
(F2R (pol 18.52 -18.91 1.52))
(B (pol 8.51 -0.21 -0.17))
(P (team teamRed) (id 1)

(head (pol 16.98 -0.21 3.19))
(rlowerarm (pol 16.83 -0.06 2.80))
(llowerarm (pol 16.86 -0.36 3.10))
(rfoot (pol 17.00 0.29 1.68))
(lfoot (pol 16.95 -0.51 1.32)))

(P (team teamBlue) (id 1)
(rlowerarm (pol 0.18 -33.55 -20.16))
(llowerarm (pol 0.18 34.29 -19.80))))

(HJ (n raj1) (ax 31.72))
(HJ (n raj2) (ax -20.12))
(HJ (n raj3) (ax -0.01))
(HJ (n raj4) (ax 40.04))
(HJ (n laj1) (ax 64.37))
(HJ (n laj2) (ax 19.96))
(HJ (n laj3) (ax 0.09))
(HJ (n laj4) (ax -40.11))
(HJ (n rlj1) (ax -0.06))
(HJ (n rlj2) (ax 20.31))
(HJ (n rlj3) (ax -39.24))
(HJ (n rlj4) (ax 20.02))
(HJ (n rlj5) (ax 0.04))
(FRP (n rf) (c 0.01 -0.01 -0.02) (f -0.21 0.21 19.77))
(HJ (n rlj6) (ax 0.21))
(HJ (n llj1) (ax -0.01))
(HJ (n llj2) (ax 0.00))
(HJ (n llj3) (ax 19.70))
(HJ (n llj4) (ax -41.02))
(HJ (n llj5) (ax 20.31))
(FRP (n lf) (c 0.01 -0.01 -0.02) (f -0.21 0.20 25.45))
(HJ (n llj6) (ax -0.16))

Figure 8.7: An example message from the server to the Nao robot including information from all the sensors.
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8.2.2 Parameters

Beside the perceptors and effectors it’s also quite important to the agent development to be
aware of the parameters used to construct the robot. This section gives information about body
measurements and the arrangement of the different body parts. While the box model of the
Nao robot is shown in figure 8.8, a detailed description of the Nao configuration is given in
table 8.4.

Figure 8.8: The Nao’s boxmodel.
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Meaning of each column from left to right in 8.4 are explained as follow:

Name the body part name of Nao

Parent the parent of the body

Translation the offset relative to its parent (meter)

Mass the mass of this body (kilogram)

Geometry the size of its geometry representation (meter)

Name the joint name installed on this body

Anchor the offset of the joint anchor relative to the body that installed on (meter)

Axis the joint axis relative to the body that installed on (pitch, roll, yaw)

Min the min angle that the joint can reach (degrees)

Max the max angle that the joint can reach (degrees)

8.2.3 Implementation

The Nao robot model is implemented in the rsg files under rcssserver3d/data/rsg/agent/nao,
see Table 8.5 for details. This section goes much deeper and is a little boring.

Table 8.5: The rsg files of Nao robot

File Name Description
box appearance.rsg Install a box which is for the GL render.
box physics.rsg Install a box that has physics effect(ODE related)
box physics nocollider.rsg Install a box that only has dynamics effect (mass, linear

velocity, etc). But it can never collide to the others.
box physics with handler.rsg Not only do the job as file box physics.rsg, but also install

a touchperceptorhandler under the BoxCollider Node.
capsule appearance.rsg Install a capsule which is for the GL render.
capsule physics.rsg Install a capsule that has physics effect(ODE related)
capsule physics nocollider.rsg Install a capsule that only has dynamics effect (mass, lin-

ear velocity, etc). But it can never collide to the others.
contactjointhandler.rsg Install a contactjointhandler to handle the collisions.
dragcontroller.rsg Install a DragController.
goal.rsg Install the goal.
hingejoint.rsg Install a hingejoint.
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9Further Resources

9.1 Project Homepage

http://sserver.sourceforge.net/
http://simspark.sourceforge.net/

9.2 Mailing Lists

simspark-devel@lists.sourceforge.net
sserver-three-d@lists.sourceforge.net

9.3 IRC channel

#simspark on irc.freenode.net

9.4 Wiki

http://simspark.sourceforge.net/wiki/

9.5 Thesis and Papers

• Marco Koegler’s master’s thesis [Kög03]

• Markus Rollmann’s master’s thesis [Rol04]

• Philipp Vorst’s master’s thesis [Vor06].

• Joschka Boedecker’s master’s thesis [Böd06].

• Oliver Obst’s doctoral dissertation [Obs07].
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9.6 How to contribute?

write some documentation ;-)
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ALicense

Copyright (C) 2002,2003 Koblenz University
Copyright (C) 2003-2008 RoboCup Soccer Server 3D Maintenance Group

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
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[Kög03] Marco Kögler, Simulation and visualization of agents in 3d environments, Master’s
thesis, Universität Koblenz-Landau, 2003.

[Lea07] M. Lekav et al, Robocup tret rozmer, Project report, Slovensk technick univerzita
v Bratislave, Bratislava, 2007, (in Slovak).

[MBdSG+07] Norbert Michael Mayer, Joschka Boedecker, Rodrigo da Silva Guerra, Oliver
Obst, and Minoru Asada, 3D2Real: Simulation League Finals in Real Robots,
RoboCup 2006: Robot Soccer World Cup X (Gerhard Lakemeyer, Elizabeth Sklar,
Domenico G. Sorrenti, and Tomoichi Takahashi, eds.), Lecture Notes in Artificial
Intelligence, Springer, 2007.

[Obs07] Oliver Obst, Controlling physical multiagent teams: Getting league-independent
results from robocup soccer, DISKI – Dissertations in Artificial Intelligence, no.
304, Aka / IOS Press, 2007, ISBN 978-1-58603-705-5.

[OR05] Oliver Obst and Markus Rollmann, SPARK – A Generic Simulator for Physical
Multiagent Simulations, Computer Systems Science and Engineering 20 (2005),
no. 5, 347–356.

[Rol04] Markus Rollmann, Spark – generic building blocks for physical multi-agent simu-
lations, Master’s thesis, Universität Koblenz-Landau, 2004.

[Sch08] J. Schilling, Erstellen eines Basis-Agenten zur Kommunikation mit dem RoboCup3D
Soccer Server, Bachelor’s thesis, Hochschule Offenburg, Offenburg, 2008, (in Ger-
man).

[Smi06] Russell Smith, Open dynamics engine v0.5 user guide, 2006.

[Vor06] Philipp Vorst, Readylog agents for the robocup 3d soccer simulation league, Master’s
thesis, RWTH Aachen, 2006.

49


	Introduction
	What is SimSpark?
	History of the Project
	About this Manual
	Reader's Guide to the Manual

	System Overview
	The Server
	The Monitor and Logplayer
	The Sample Client
	Available Simulations

	Getting Started
	Download and Installation Instructions
	An Example of a Simulation Run

	Simspark
	General message format
	Perceptors
	General Perceptors
	Soccer Perceptors

	Effectors/Actuators
	General Effectors
	Soccer Effectors
	Older Version Effectors

	Simulation Update Loop
	Single-threaded Timer
	Multi-threaded Timer


	Rcssmonitor3d
	Internal Monitor
	External Monitor
	Playing Log files
	Key Assignments

	Rcssagent3d
	Behaviors
	SoccerbotBehavior

	How to change Behaviors?

	Simulations
	The Soccer Simulation
	Environment and Objects on the Field
	Rules Judged by the Automatic Referee
	Rules Judged by the Human Referee


	The Robot Models
	Soccerbot
	Equipment & Parameter

	Nao
	Equipment
	Parameters
	Implementation


	Further Resources
	Project Homepage
	Mailing Lists
	IRC channel
	Wiki
	Thesis and Papers
	How to contribute?

	License

