
Deep Reinforcement Multi-Directional
Kick-Learning of a Simulated Robot with Toes

Martin Spitznagel
David Weiler
Klaus Dorer

Institute for Machine Learning and Analytics
Offenburg University, Germany

{mspitzna,dweiler}@stud.hs-offenburg.de, dorer@imla.ai

Abstract—This paper describes a thorough analysis of using
PPO to learn kick behaviors with simulated NAO robots in the
simspark environment. The analysis includes an investigation of
the influence of PPO hyperparameters, network size, training
setups and performance in real games. We believe to improve the
state of the art mainly in four points: first, the kicks are learned
with a toed version of the NAO robot, second, we improve the
reliability with respect to kickable area and avoidance of falls,
third, the kick can be parameterized with desired distance and
direction as input to the deep network and fourth, the approach
allows to integrate the learned behavior seamlessly into soccer
games. The result is a significant improvement of the general
level of play.

Index Terms—Deep Reinforcement Learning, Proximal Policy
Optimization (PPO), toed robot, kick learning

I. INTRODUCTION

Behavior learning plays a key role since the early days
of robotics and in RoboCup specifically. Good progress has
been made by applying genetic learning algorithms to the
optimization of parameters of model based behaviors [5], [8]
and even model free behaviors [3]. However, especially the
model free approaches have the limitation that they are open
loop: the behaviors learned do not take the current observations
and state of the agent into account. They are replayed as
learned and fail, if they are triggered in situations that differ
from the situation during learning.

Reinforcement Learning does not have this limitation, but
had been limited to small observation and action spaces.
In recent years however, deep reinforcement learning (DRL)
algorithms like off-policy algorithms DDPG or DQN or on-
policy like A2C or PPO [6] have overcome these limitations
and work in comparably huge continuous observation and con-
tinuous action spaces. By using those algorithms, professional
e-sport teams, for example, could be beaten by artificial neural
networks in the competitive multiplayer game Dota21.

While this has already been applied very successfully to
learning to walk in the simspark domain [2], [4], progress
on kick behaviors and the usage of toed robots remains an
open issue. Also, in these works there is a gap between the
extremely successful behavior performance in training setup

1https://openai.com/blog/openai-five-defeats-dota-2-world-champions

and the benefit from it during real game play. This paper
describes an approach to overcome these limitations.

The remaining of the paper is organized as follows: Sec-
tion II presents related work on learning humanoid robot
behaviors with PPO. Section III provides background of the
simspark domain used for learning. Section IV explains the
approach and setup used for this evaluation. Section V presents
in depth results to validate our approach. Finally, section VI
concludes and shares ideas for future work.

II. RELATED WORK

Deep Reinforcment Learning and especially PPO have
gained increasing interest in robotics and was first introduced
into the simspark domain with the work of Abreu et al. [1].
They demonstrated a stable walk (better say run) learned
through PPO that was 2.5 times faster than the best teams at
that time in the 3D soccer simulation league. They were able to
integrate the walk into team play, but the overall performance
in game play so far did not profit in the same manner. The
observation space used in their work was used as the starting
point for this work and adjusted to the kick task.

The extreme walking speed of 2.5 m/s has meanwhile
been increased in work of [4] to more than 3 m/s. They
examined the advantage of end rewards, changes in neural
network architecture, reward scaling, and the entropy co-
efficient. The authors conclude that hyperparameters could
dramatically change the way the agent learns, depending on
the environment and task. Since the model-based optimization
of hyperparameters is extremely time consuming, they tackle
the problem by randomly searching for multiple sets. Hyper-
parameters including timesteps, batch size, epochs, clip range,
gamma and lambda were randomly distributed with a limited
number of possible values. Thus, the authors limited the search
space in a number of possible combinations to make random
searches feasible. The results of 60 random hyperparameters
showed that PPO is susceptible to changes in hyperparameters,
as the results vary widely. In this paper, we systematically look
at the effects of various hyperparameters in more detail.

Although seemingly easier to learn, work on kick learning
is rare so far. [9] presented a setup for a static kick and a
kick in motion using DRL. The learned model for the static
kick produced a failure rate of 1%, in which the robot did not978-1-6654-3198-9/21/$31.00 ©2021 IEEE

hit the ball at all. 93% of all kicks had an average kicking
distance of 8.53 meters. However, the robot was falling after
these kicks almost always. The reward function did not contain
benefit in keeping upright. Also, the robot did not have toes.
In this work, a robot with toes is used that learns a kick that
is stable. The kick in this work is further multi-directional and
tolerant to a big range of relative ball positions.

III. LEARNING DOMAIN

Learning is performed in the RoboCup 3D soccer simula-
tion environment which is based on SimSpark2 and initially
initiated by [7]. It uses the ODE physics engine3 and runs at
a speed of 50Hz. Simspark provides variations of NAO robots
with 22 DoF for the robot types without toes and 24 DoF for
the type with toes (NAOToe henceforth) used in this work.
More specifically, the robot has 7 (6) DoF in each leg, 4 in
each arm and 2 in its neck.

The feet of NAOToe are modeled as rectangular body parts
of size 8x12x2cm for the foot and 8x4x1cm for the toes (see
Figure 1). The two body parts are connected with a hinge joint
that can move from -1 degrees (downward) to 70 degrees.

Fig. 1. Wire model of the NAO with toes (left) and how it is visualized
(right).

All joints can move at an angular speed of at most 7.02
degrees per 20ms. The simulation server expects to get the
desired speed at 50 Hz for each joint. If no speeds are sent
to the server it will continue movement of the joint with the
last speed received. Joint angles are noiselessly perceived at
50Hz, but with a delay of 40ms compared to sent actions. So
only after two cycles the robot knows the result of a triggered
action. A controller provided for each joint inside the server
tries to achieve the requested speed, but is subject to maximum
torque, maximum angular speed and maximum joint angles.

The simulator is able to run 22 simulated NAOs in real-time
on reasonable CPUs. It is used as competition platform for the
RoboCup 3D soccer simulation league4. For training, only a
single robot is on the field.

Learning is performed using the OpenAI stable baselines
implementation of PPO named PPO25. Technically, an envi-
ronment wrapper was created to send actions via sockets to the

2https://gitlab.com/robocup-sim/SimSpark
3http://www.ode.org/
4https://www.robocup.org/leagues/23
5https://github.com/hill-a/stable-baselines

TABLE I
OBSERVATION SPACE.

Index Count Observation
0 1 Counter
1-4 4 head joints*
5-20 16 arm joints*
21-48 28 hip, knee, ankle, toe joints*
49-54 6 3D relative ball position*
55-102 48 foot and toe force sensors*
103-108 6 accelerometer*
109-114 6 gyroscope*
115-116 2 torso up vector x,y
117 1 ball relative angle
118 1 desired kick direction (-90..90°, relative)
119 1 desired kick distance (0..20m)

java client controlling the robot and receive the observations
and rewards from the robot. The java client itself also uses
sockets to send the motor commands to the simspark server
(written in C++) and receive the sensor information.

IV. APPROACH

A. Observation Space

The observation space has been inspired by work of [1].
Table I shows the 120 entries of the observation space. Entries
in bold font are raw sensor values and their derivatives (marked
with * when applicable). The force sensors include the 3D
point of force as well as the force vector itself resulting
together with the derivatives in twelve values per sensor. In
difference to [1], the usage of the NAO robot with toes not
only adds two additional joint angle sensors, but also one force
sensor per toe. Also, it turned out useful to add the torso’s x
and y components of the up vector, which are derived values,
mainly from camera localization. The relative angle of the ball
used is somewhat redundant to the relative ball position.

Inputs 118 and 119 are used to tell the network which direc-
tion and distance the kick is desired to achieve. It was fixed to
0 and 20 for the straight kicking experiments of section V-C.
In section V-E these ‘observations’ were successfully used to
learn kicks in a range of -30 to 30 degrees and for distances
from 3 to 10 meters.

B. Action Space

For the kicking behavior, only the leg joints are part of the
28 entries action space (see Table II). For each joint, the action
space contains two values: the destination angle to achieve,
which is mapped to the possible values of each joint and the
maximum angular speed to be used. Variants that only use
the desired angle or only uses the angular speed produced
worse results. Also, having angle and speed for each motor
makes it possible to use the genetically learned kicks, that
also use angle and speed, for pretraining the networks with
expert behaviors.

C. Reward Function

Since kicking is a relatively short behavior (18 cycles),
the reward function did not contain continuous reward, but
only end reward. The final reward for the straight kicking

TABLE II
ACTION SPACE.

Index Count Joint Orientation
0-5 6 left hip YawPitch, Roll, Pitch
6-7 2 left knee Pitch
8-11 4 left foot Roll, Pitch
12-13 2 left toe Pitch
14-27 14 right leg YawPitch, Roll, Pitch

experiments included the sum of achieved kick distance in
x-direction, the negative absolute deviation in y-direction and
a negative penalty for falling: reward = x−|y|− (1− s/88),
where s is the number of stable cycles after triggering the
kick. To save time, an episode is stopped if the agent falls or
if after 88 cycles (approx. 1.5s) after triggering the kick we
can be sure that the agent is stable. In both cases, the achieved
kick position is estimated as the 8s future ball position.

The final reward for the multi-directional kicking experi-
ments is a mixture of the relative distance to the desired kick
position and a penalty for falling: reward = a1∗(d0−d)/d0−
a2∗(1−s/88), where d0 is the desired kick distance and d the
distance of the (estimated) ball end position to the desired kick
position and a1, a2 are parameters balancing both penalties
tuned to 100 and 25 respectively in earlier learning runs.

D. Training Setup

The setup of the learning plays an important role with
respect to creating initial conditions that are similar to the
conditions during a game. This usually increases learning time,
but simplifies the transition from a learned to a successfully
used behavior. The goal is that the robots use the learned kick
during games when stepping slowly towards the ball or at
the ball. Therefore, a training episode is designed as follows:
the NAO robot is beamed randomly into a rectangle near the
ball (see section V-D). After few initialization cycles, it steps
in place for one second without trying to achieve a desirable
position! The kick behavior with the right leg is then triggered
when foot force sensors indicate just touching the ground (first
force indication after at least five cycles without force). The
robot then performs an 18 cycles deep kick behavior that is
subject of learning. 18 cycles was found to be sufficient in
preliminary experiments to kick the ball and stabilize after the
kick. After the kick, the robot steps again in place for 1.4s
to see if the robot was able to avoid a fall. This means that
only 18 of the roughly 150 simspark simulation cycles of an
episode are learning steps with respect to PPO.

E. Asynchronous Training

PPO2 allows to use multiple threads that collect data from
parallel environments to train one model. To do so, it has
to receive an observation from each environment per cycle.
Since the actual kick is only performed in 18 of 150 cycles, it
often happens that several threads have to wait for a few other
environments to setup or wait for the result.

In this work, we designed an asynchronous mode to provide
observations. The environment wrapper waits for k% of the

TABLE III
SYNCHRONOUS VS. ASYNCHRONOUS.

Sync Async
Average Reward, 48h 6.834 8.967
Updates, 48h 166 1627
Episodes in 20min 5644 20782

environments to return an observation. For all other envi-
ronments still busy performing preparation cycles, a dummy
observation with zeros is returned to PPO and the correspond-
ing action ignored. The learning process and quality do not
decrease by this. This reduces the syncing problem between
all environments and makes sure that threads are less likely
to freeze and wait for some other thread to finish. The results
are shown in Table III with a used threshold of a minimum
of 70% valid observations per cycle. The table contains the
average reward received after 48 hours of learning, the network
updates performed in that time and completed episodes in
20 minutes. It can easily be seen that asynchronous training
increases performance and made the following research much
more feasible in a given amount of time.

F. Mirroring Behaviors

Kicking is an unsymmetric behavior. To reduce learning
times, the robots learn a right leg kick that is then mirrored
to its left leg. Mirroring a DRL-kick is considerably more
difficult than mirroring a genetically learned kick. The later
only requires to mirror the action space since they are typically
open loop. For a DRL-kick, also the observation space has to
be mirrored.

For the action space, right side joints have to be replaced
with left side joints. Also, all roll joints and the arm yaw joints
need to be mirrored. Mirroring means to negate the desired
joint angle. This can either be done after the mapping to the
co-domain of the network of [-1..1]. If done before, also the
joint min and max values have to be mirrored, at least for the
roll joints that have a non-symmetric co-domain (e.g. of -25
to 45 degrees).

For the observation space, all joints have to be mirrored
as described above. Additionally, the 3D relative ball position
needs to be mirrored at the y-axis, the foot force and its force
origin have to be mirrored at the y-axis, the accelerometer at
the y-axis, the gyroscope at the y- and z-axis, the torso roll
angle and the ball relative angle also need to be mirrored.
Finally, also the relative desired kick direction is mirrored.

V. RESULTS

In order to evaluate the described approach, extensive
simulation runs of more than 7000 server hours (Intel Xeon
E5-2630 v4 @ 2.2 GHz, 10 Cores) were conducted and are
documented in this section. The first part concerns the DRL
approach PPO, while the second part deals with the results of
the domain itself.

A. Hyperparameter Evaluation

PPO defines a couple of hyperparameters that are evaluated
in this subsection. The following experiments were started
from one initial hyperparameter set and only the specified
parameter was adjusted. In this evaluation, the interdependence
of hyperparameters had to be ignored due to the enormous time
consumption of a single run.

1) Learning Rate: The learning rate controls how quickly
the neuronal net is adapting to a possible solution for its
kicking task. The results for straight kick learning using six
different learning rates are compared in Figure 2. Each run
took 48 hours (t=1) of training. The final reward roughly maps
to the achieved distance.

Fig. 2. Influence of the learning rate on straight kick learning.

The default value used is 0.0003 and it seems like learning
rates close to this value show similar results. Even though,
it is still visible that the slightly higher learning rate of
0.0005 is learning faster in the first couple of hours. The
learning progress and final result only degrade using extremely
high or low learning rates. It can also be seen that a very
low learning rate like 0.00003 visibly slows down the actual
learning progress and the neural network converges towards a
significantly worse result.

2) Gamma: Gamma is a discount factor that makes sure
that actions closer to the end of the episode get a higher share
of the episode reward. Figure 3 shows the results of various
values of gamma when learning a straight kick. As expected,
small values of gamma show poor performance, while values
above 0.99 show the best results. The difference between the
three highest values 0.99, 0.995 and 1 is not significant.

3) Nsteps: Nsteps is the number of collected cycles which
are considered for one network update. Figure 4 shows the
results of several nsteps sizes and its result for learning the
straight kick behavior. With a high nsteps size, more data needs
to be collected in order to perform an update of the neural
network. This can clearly be seen in the results. The bigger
the nsteps size, the slower the learning progress since fewer
updates are performed and more data is collected on each step.
More data per update has a positive impact in terms of quality

Fig. 3. Influence of the discount factor gamma on kick learning.

of the learned kick. The best results were achieved with an
nsteps size of 2048 cycles per network update.

Fig. 4. Influence of the nsteps size on kick learning.

4) Minibatch Size: The minibatch size defines the amount
of minibatches taken for each update for the minibatch gradi-
ent descent. In Stable Baselines, the minibatch size reflects
the amount of batches into which the collected dataset is
divided. A minibatch size of 32 with an nsteps size of 2048
corresponds to 32 minibatches with a size of 64 for the
minibatch gradient descent. The results in Figure 5 show the
smaller the minibatchsize, the better the quality of the resulting
neural network. In addition to that, the amount of performed
episodes are significantly higher in comparison with higher
minibatch sizes after a 48 hours of learning.

B. Network Size

PPO2, by default, uses two fully connected hidden layers
with 64 neurons each in the value and in the policy network.
Figure 6 shows learning results for various network sizes.
Surprisingly, a network with only four neurons in both hidden
layers and both networks is still able to learn a reasonably
well kick though with a significantly lower reward of 7. The
movement looks rougher like gross motor skills, but still

Fig. 5. Influence of the minibatch size on kick learning.

clearly recognizable as a kick. For eight neurons the result
is slightly better, but still worse compared to bigger networks.
With already 16 neurons in each layer, the kick behavior
achieved comparable results to the default value of 64.

Fig. 6. Reward of kicks with different hidden layer sizes.

C. Straight Kick Distance and Precision

Figure 7 shows a comparison of the final position of 100
kicks from starting coordinate (0,0). The PPO kick is slightly
longer on average and has considerably less spread in x and
y direction. Also, the number of failed kicks is significantly
lower. In a series of 1000 kicks, the achieved distance of the
PPO kick was only in three cases less than 5m.

D. Kickable Area

The usage of a DRL policy network for controlling the
agent’s behavior has a fundamental advantage over behaviors
learned with genetic learning: they are closed-loop. The action
is calculated based on the current observation while a genet-
ically learned behavior in joint space is simply replayed no
matter what the current situation is.

The DRL-Kick makes use of this, for example, with ad-
justed movements depending on the relative position of the

Fig. 7. Comparison of ball end positions of a genetically learned kick (left)
and a PPO learned kick (right).

Fig. 8. The kickable area of the PPO kick. The green rectangle shows where
the robot was beamed to during learning.

ball, which is part of the observation space. In order to show
this, the initial position of the player relative to the ball during
learning was randomly set within a rectangle of 10x13cm
with respect to the ball (at position (0,0)) (see Figure 8). The
vertical axis represents the position of the robot with respect
to the ball in the frontal plane. A value of less than 0.15m
causes the robot to touch the ball already while stepping in
place. The horizontal axis represents the player position with
respect to the sagittal plane.

Each position in Figure 8 is the average reward of 50 kicks
from the corresponding position relative to the ball. As can be
seen, the robot learned a successful kick in the whole area and
slightly outside it. The huge difference in size of the kickable
areas of the PPO and the genetic kick is shown in Figure 9.
The genetic kick used as comparison uses a similar action
space with joint angles and maximum speeds for each joint, but
limited to four keyframes with learnable duration (for details
see [3].

E. Multi-Directional Kick

The extreme flexibility of DRL is shown in this experiment.
In addition to beaming the player into various positions relative
to the ball, now the two steering inputs of desired distance and
direction are used to learn a multi-directional kick.

Fig. 9. Comparison of the kickable area.

In a first experiment, the network learned during straight
kicking was used as a starting point for the NAOToe. During
learning, the desired direction was randomly selected for each
kick in a range from -45 to 45 degrees. The desired kick
distance was randomly selected between 3 and 10 meters.

Figure 10 shows the results of roughly one week of kick
learning. Each rectangle is an average of 100 kicks with a
corresponding fixed desired direction and distance. As can be
seen, the robot is able to learn to kick into a considerable
range of directions and distances despite the big variance of
the relative ball position. Two videos that demonstrate the kick
are available here6 and here7.

Fig. 10. Reward with respect to desired direction and distance of NAOToe.

The same procedure was performed in a second experiment
with a NAO robot without toes. Figure 11 shows the difference
of the toed robot to the robot without toes for each direction
and distance. As can be seen, the robot with toes has a
considerable advantage on longer kick distances while the
robot without toes is more precise on shorter kicks. For game
playing, longer kicks are of higher value though.

Figure 12 shows typical toe movements over time. The first
graph shows the toes of the kicking and support foot for a
straight kick, the second for a kick 30 degrees to the left, the
third for a kick 30 degrees to the right. The ball is hit in cycle
6 (dashed line). It should be noted that the movement for even
each straight kick varies. This is true even if the randomness of
different start positions is eliminated. The reason is, that there
is still non-determinism from the simulator and the stepping in

6https://youtu.be/sHlkRaljtjY
7https://youtu.be/F82hqicRYZQ

Fig. 11. Relative kick success of NAOToe compared to a NAO without toes.

place before kick and the policy network adjusts the movement
to each specific situation.

Fig. 12. Movements of the toe joints for a straight kick (1), a kick 30 degrees
to the left (2) and 30 degrees to the right (3).

Fig. 13. Visualization of the kick phases of a straight kick.

As can be seen in Figure 13, the robot has learned to step on
its support toe to improve the kicking geometry and keep the
stability of its stand. In 93 of 100 kicks the NAOToe did not
fall during or after the kick. This is only slightly less stable
than the NAO (94 out of 100), but more effective for longer
kicks (see Figure 11).

F. Performance in Games

The setup of the kick learning has been chosen in a way to
simplify the introduction of that behavior into real games. In
fact, the PPO kick behavior can replace the genetical kick by
changing a single line of code, that adds the kick to the list of
available kicks instead of its predecessor. The performance of
the new straight kick was tested in a series of 200 games of
two identical teams of eleven robots with the only difference
that one team was using the PPO straight kick while the other
used the old genetic kick instead. The PPO team scored 0.665
goals on average which is significantly more than the 0.385
goals for the comparison team. Of the 200 games, the PPO
team won 83 games, tied in 76 and lost 41.

In another series of 200 games, seven of the eleven players
of one team had toes and used the multi-directional kick (seven
is the highest number of identical robot types allowed). The
other team was identical except that the toed robots used the
PPO straight kick learned. The multi-directional team scored
0.695 goals on average compared to 0.460 goals of the team
without multi-directional kick (signif.). Of the 200 games, the
multi-directional team won 79 games, tied in 72 and lost 49.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown that PPO can be used to
learn a multi-directional kick with a toed NAO robot that is
highly flexible with respect to the relative ball position. The
deep neural networks are able to learn situation dependent
movements of the robots based on, among other, desired kick
direction, kick distance and ball position. This demonstrates
the main advantage of behaviors learned through DRL over
pre-programmed or genetically learned behaviors.

The approach to setup a learning situation that is as close
as possible to real game situations was made feasible with
an asynchronous version of PPO2 that allows to define the
number of instances to wait for. Finally, the multi-directional
kick shows highly significant improvement of game play.

Future work includes learning a kick from full speed
running for which initial results are very promising. Also,
one problem to address is certainly the long learning times.
Tests with pretraining of networks did not show promising
improvement on learning time or quality. Other approaches
could be to use off-policy learning algorithms. They promise
to be more sample efficient and most of the learning time is
due to collecting samples in the simulation domain.

ACKNOWLEDGMENT

We thank the magmaOffenburg team and particularly Jens
Fischer for the implementation of the stable baselines envi-
ronment wrapper used in this work and the FC Portugal team
for very valuable discussions on this topic.

REFERENCES

[1] Abreu M, Lau N, Sousa A and Reis L P (2019). Learning low level skills
from scratch for humanoid robot soccer using deep reinforcement learn-
ing. In Proceedings of 2019 International Conference on Autonomous
Robot Systems and Competitions (ICARSC). IEEE.

[2] Abreu M, Reis L P, Lau N (2019). Learning to Run Faster in a
Humanoid Robot Soccer Environment Through Reinforcement Learning.
In RoboCup 2019: Robot World Cup XXIII (pp. 3–15). Springer
International Publishing.

[3] Dorer K (2017). Learning to Use Toes in a Humanoid Robot. In Akiyama
H, Obst O, Sammut C, Tonidandel F: RoboCup 2017: Robot World Cup
XXI, Nagoya, Japan, Springer Verlag.

[4] Melo L and Maximo M (2019). Learning Humanoid Robot Running
Skills through Proximal Policy Optimization. arXiv:1910.10620.

[5] MacAlpine P (2017). Multilayered Skill Learning and Movement Coor-
dination for Autonomous Robotic Agents. Ph.D. Thesis, The University
of Texas at Austin, Austin, Texas, USA.

[6] Mnih V, Badia A, Mirza M, Graves A, Lillicrap T, Harley T, Silver D and
Kavukcuoglu K (2016). Asynchronous Methods for Deep Reinforcement
Learning. arXiv:1602.01783.

[7] Obst O and Rollmann M (2005). SPARK - A Generic Simulator
for Physical Multiagent Simulations. Computer Systems Science and
Engineering, 20(5).

[8] Peters J, Kober J, Mülling K, Nguyen-Tuong D and Kroemer O
(2012). Robot skill learning. In 20th European Conference on Artificial
Intelligence (ECAI 2012), pages 1–6.

[9] Teixeira H, Silva T, Abreu M and Reis L P (2020). Humanoid
Robot Kick in Motion Ability for Playing Robotic Soccer. 2020 IEEE
International Conference on Autonomous Robot Systems and Com-
petitions (ICARSC), Ponta Delgada, Portugal, 2020, pp. 34-39, doi:
10.1109/ICARSC49921.2020.9096073

