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Abstract—In many application areas, Deep Reinforcement
Learning (DRL) has led to breakthroughs. In Curriculum Learn-
ing, the Machine Learning algorithm is not randomly presented
with examples, but in a meaningful order of increasing difficulty.
This has been used in many application areas to further improve
the results of learning systems or to reduce their learning time.
Such approaches range from learning plans created manually by
domain experts to those created automatically. The automated
creation of learning plans is one of the biggest challenges.

In this work, we investigate an approach in which a trainer
learns in parallel and analogously to the student to automatically
create a learning plan for the student during this Double
Deep Reinforcement Learning (DDRL). Three Reward functions,
Friendly, Adversarial, and Dynamic based on the learner’s
reward are compared. The domain for evaluation is kicking
with variable distance, direction and relative ball position in the
SimSpark simulated soccer environment.

As a result, Statistic Curriculum Learning (SCL) performs
better than a random curriculum with respect to training time
and result quality. DDRL reaches a comparable quality as the
baseline and outperforms it significantly in shorter trainings
in the distance-direction subdomain reducing the number of
required training cycles by almost 50%.

Index Terms—Deep Reinforcement Learning, Curriculum
Learning, Proximal Policy Optimization (PPO), kick learning

I. INTRODUCTION

In many application areas, the use of curriculum learning
has succeeded in improving the performance of machine learn-
ing systems and reducing learning time [16]. In curriculum
learning, the machine learning algorithm does not receive its
examples in a random, but in a meaningful order where the
difficulty is gradually increased [4]. Appropriate approaches
range from learning plans created manually by domain experts
to their automatic generation by a trainer learning with Rein-
forcement Learning (RL) [16]. One of the main challenges
here is the automatic generation of the learning plan in an
unknown domain and an unknown agent [3].

Curriculum learning has also achieved success in the
SimSpark simulated soccer environment. For example, in [11]
and [10] dribbling was learned with DRL in various forms.
In both works, the importance of a manually created learning
plan is emphasized as elementary for learning success.

In this work, an intelligent trainer automatically creates a
learning plan for an agent learning to kick using DRL during
the student’s training. Two approaches are taken here. In Dou-
ble Deep Reinforcement Learning (DDRL), the trainer learns

analogously to its student using DRL. Statistical Curriculum
Learning uses the last achieved goodness of the individual
parameter combinations to determine probabilities for their
selection by random sampling.

The remaining of the paper is organized as follows: Sec-
tion II presents related work on intelligent trainers and auto-
mated curriculum generation. Section III explains the approach
and setup used for this evaluation. Section IV provides back-
ground of the SimSpark domain used for learning. Section V
presents in depth results to validate our approach. Finally,
section VI concludes and shares ideas for future work.

II. RELATED WORK

Learning behaviors end to end using DRL is a heavily
researched area. One domain for this is the SimSpark simu-
lated soccer environment1 initially initiated by [12]. Successful
attempts to dramatically improve the walking speed of the
simulated NAO robots have been reported by [1], [2], [9].

The learning of static kicks and those in motion using DRL
and the Proximal Policy Optimization algorithm (PPO) [13]
was studied by Teixeira et al. in [15]. In the case of the
static kick, an average distance of 8.53 m could be achieved.
In less than 1 % of the cases the ball was not hit. The
authors emphasize in particular the time improvement of the
kick execution. This was on average 0.38 s and is a clear
improvement to the previous kicks. The kicks in motion were
divided into different subproblems, also here the results are
very good especially regarding the temporal execution.

Spitznagel et al. [14] analyzed the learning of kicks using
proximal policy optimization in the SimSpark simulated soccer
environment. Compared to the aforementioned work, this work
used the toe version of the NAO robot and learned kicks where
the player does not almost always fall down after execution.
Furthermore, the kicks are also multidirectional and tolerant
to a wide range of relative ball positions. As a result, in
addition to improving reliability, an expansion of the kickable
area and the avoidance of falls, the overall level of play could
also be significantly improved. Furthermore, the kick could be
parameterized with the desired distance and direction. Which
distance and direction to train has been randomly selected in
this work.

A similar approach to DDRL is taken by Dong et al. in [5].
The authors extend one RL instance with a second RL instance

1https://gitlab.com/robocup-sim/SimSpark979-8-3503-0121-2/23/$31.00 ©2023 IEEE



as an intelligent trainer. They call this approach reinforce-
ment on reinforcement (RoR). The first instance is a model-
based DRL system. From the model-based approach, there
is a significant manual effort to improve the hyperparameters
for optimizing the joint control policy, learning the system
dynamics, and sampling data from two sources. Therefore and
different to this work, the authors use the second instance as
an intelligent trainer that learns the optimal hyperparameter
configuration for the first instance. Various RL algorithms can
be used for the trainer in this regard. The architecture was
applied to several OpenAI-Gym problems. As a result, up to
56 % of the sampling cost could be saved.

Automatic learning plan generation for curriculum learning
has been the subject of several works. For example, in [6],
Graves et al. present a concept for automatically generating
a learning plan using a measure of the amount a network
learns from each sample as a reward for a non-stationary multi-
armed bandit algorithm. In several experiments, the approach
has been shown to speed up learning to a satisfactory quality
of result, and in some cases to halve it. Zhao et al. [17]
propose a framework for data selection based on the Actor-
Critic model, which aims to learn a curriculum to improve a
machine translation neural network (NMT). The Critic predicts
the expected model performance based on a given sample.
The Actor learns to select the best sample from a random set
of samples. In comparison, Kumar et al. in [7] use a Deep
Q-Network (DQN) to automatically generate a curriculum
for solving an NMT task. Both approaches improved the
performance of the NMT and outperformed several baseline
methods.

Matiisen et al. [8] propose a Teacher-Student Curriculum
Learning Framework (TSCL) for performing automatic cur-
riculum learning, which can be used for both supervised
learning and RL tasks. They formalize the TSCL as a partially
observable Markov decision process (POMDP). Although
POMDPs are usually solved with RL algorithms, the authors
resort to simpler heuristics. The reason is that they wanted to
train the student in a single training episode. They describe a
set of algorithms that preferentially learn the tasks on which
the student makes the most progress. The performance of
the framework is evaluated on two tasks with a discrete
parameterization. The framework was able to outperform a
hand-crafted learning plan in both tasks. Furthermore, in one
task, it was able to solve a problem that could not be solved
with a learning plan created by hand. Additionally, learning
was also significantly faster in both cases.

III. APPROACH

In contrast to the aforementioned works, this work uses
the DDRL to combine two DRL instances. An intelligent
trainer is used to train a kick learning DRL student in the
SimSpark simulated soccer environment. Here, the trainer
does not learn the optimal hyperparameter configuration of
its student, but automatically creates a learning plan for the
student during its own training. No heuristics are used in this
process. The trainer is trained analogously to its student with

the same DRL algorithm. Its training also consists of several
episodes. The trainer’s reward is directly based on that of the
student. The trainer’s reward functions are not aimed at the
amount the network learns from the samples or the greatest
possible learning progress of the subtasks, but at the absolute
goodness of the subtasks achieved so far. With statistical
curriculum learning, a statistical method for the generation of
an automatic learning plan is additionally investigated. Here,
the probability that a parameter combination is trained depends
on the previously achieved goodness of the learner for this
combination.

In DDRL, the trainer is trained analogously and in parallel
to its student using DRL. While training the student, it learns
which training parameter combinations add the most value
to the student’s training progress. Figure 1 shows that the
trainer receives state information from the environment about
the student’s learning progress. This information is used as
input for the neural network, which determines the next
training parameters based on this information. These training
parameters define the next environment setup/ training task for
the student. This is followed by the next training step of the
student. In addition to the student, the trainer also receives
feedback for the quality of its action. The trainer’s reward
is based on that of the student. By rewarding the choice of
training parameters that the student is either not yet good at
or already good at, a learning plan is created for the student
during its own training.

Fig. 1. Principle of DDRL.

In statistical curriculum learning, by comparison, no neural
network is trained. The training parameters are determined in
each episode by random sampling. The selection probability of
a parameter combination depends on the last achieved trainer
reward of this combination and increases with a higher reward.

A. Observation Space

The trainer’s observation space is inspired by Matiisen’s et
al. simple formalization of the partially observable Markov



Decision Process [8]. The resulting observation contains the
last achieved rewards of the student on all possible training
parameter combinations.

ozt =

n∑
i=1

R̂iztx

n
(1)

ozt is the observation entry of the training parameter com-
bination z = az in the current episode t. az corresponds to the
action representing the parameter combination. The training of
the student is executed with n threads in parallel, so the value
is the average of n student rewards (R̂) of the combination
z from the episode tx in which it was last trained. Figure 3
gives an idea on the dimensionality of the observation space.

B. Action Space

The dimension and concrete entries of the trainer’s action
space depend on the variable training parameters. The action
contains the training parameter combination that the student
should train next. For kicking in the SimSpark simulated
soccer environment, four variable training parameters (desired
distance, direction, x- and y-coordinate of the player position
relative to the ball) result in a four-dimensional action space.
However, for a better representation of the results, two separate
training sessions are performed, each with only two variable
parameters. The action contains the desired distance and di-
rection to be trained in one training and the x and y coordinate
for the player position relative to the ball in another.

C. Student Reward Function

Since kicking is a relatively quick behavior (18 cycles
= 360 ms), the reward function did not contain continuous
reward, but only episode reward. The episode reward for the
multi-directional kicking experiments (student) is a mixture of
the relative distance to the desired kick position and a penalty
for falling: reward = a1 ∗ (d0 − d)/d0 − a2 ∗ (1 − s/88),
where d0 is the desired kick distance and d the distance of
the (estimated) ball end position to the desired kick position
and a1, a2 are parameters balancing both penalties tuned to
100 and 25 respectively in earlier learning runs. To save time,
an episode is stopped if the agent falls or if after 88 cycles
(approx. 1.5s) after triggering the kick it is highly likely that
the agent is stable. In both cases, the achieved kick position
is estimated as the 8s future ball position.

D. Friendly Reward Function

The Friendly-Reward function of the trainer is the higher the
better the result of the student is. This is to give preference to
parameter combinations that already work well. The trainer’s
reward is therefore equal to the student’s reward. Since the
student is trained with several threads at the same time, an
average value is used.

RF =

n∑
i=1

R̂i

n
(2)

Here, R̂i is the reward of a student thread after an episode
with the current parameters with n the total number of threads.

E. Adversarial Reward Function

The Adversarial strategy is used to preferentially train
weak points of the student. The Adversarial Reward Function
therefore evaluates the trainer better, the worse the result of
the student is on a subtask. For this reason, the previously
described friendly reward function is extended by a factor -1.

RA =

n∑
i=1

(−1)R̂i

n
(3)

F. Dynamic Reward Function

The Dynamic-Reward function mixes the Friendly and
Adversarial strategies. It starts with Friendly and switches to
Adversarial when a variable threshold (b1) of total completed
episodes (b) is reached.

RD =

{
RF , for b < b1

RA, for b ≥ b1
(4)

G. Random Episodes

The trainer’s observation of an episode contains the last
achieved rewards of the student for each possible parameter
combination (subtask). It therefore does not represent the
current state of the student, but is merely a memory. However,
if parameter combinations are no longer trained because they
had a significantly lower benefit for the trainer at a point in
time, the student unlearns them. The trainer, however, does
not notice this unlearning, because the entry in the observation
is only updated if the parameter combination is trained. The
authors in [8] call a similar behavior ”problem of forgetting”.
To mitigate this problem and to update the observation from
time to time, the training parameters are randomly chosen after
every 100 episodes.

H. Training Setup

The setup of the training is shown in Figure 2. The yellow
boxes extend the existing student architecture with the intelli-
gent trainer. The Python component is a framework implemen-
tation for launching and configuring the stable baselines2 PPO
implementation PPO2, which is used for both the student and
the trainer. A TCP interface is provided for communication
with the component.

For the student, the multiprocess functionality of the PPO2
implementation is used. For this, an environment instance is
created for each thread on Java side and on Python side. All
these threads train the same network model. In the Java part,
n threads are created for training the student. Each runner
independently executes its episodes like kicks in the specific
case. Before each episode, the learning parameters such as the
desired distance and direction of the kick are prepared by the
trainer. For the DDRL, the trainer PPO2 Python component is

2https://github.com/hill-a/stable-baselines



Fig. 2. Training Setup.

used. For Statistical Curriculum Learning, the corresponding
Java component is used. In each episode, a Java representation
of the concrete learning problem (KickWalkProblem) is gen-
erated. This abstraction of the learning problem (ALP) takes
into account the learning parameters prepared by the trainer
and performs appropriate initializations based on them.

Each episode consists of several steps. This means, for
example, that a kick is not executed with only one action, but
consists of a sequence of actions of the agent. In each step,
the ALP determines the observation and the reward of the
last action and transmits both to the Python component. The
Python component then responds with the next action for the
player. The episode reward is also transmitted to the Python
component by the ALP. The Runner transmits the result of the
student to the trainer component, which determines the trainer
reward and the new observation of the trainer. The Runner
then starts a new episode, if necessary.

IV. LEARNING DOMAIN

Learning is performed in the RoboCup 3D soccer simulation
environment which is based on SimSpark. The simulator is
able to run 22 simulated NAOs in real-time on reasonable
CPUs. It is used as competition platform for the RoboCup 3D
soccer simulation league3. For training, only a single robot is
on the field.

The NAO robots used here have 24 degrees of freedom.
Two motors control the two toe joints, one on each leg.
The action space of the student DRL directly controls these
motors (for kicking only the 14 leg motors). The student’s
observation space is a mixture of raw sensor information
from joint encoders, IMU, foot force sensors and processed
information like ball position or the player’s up vector.

3https://www.robocup.org/leagues/23

V. RESULTS

In order to evaluate the described approach, extensive
simulation runs of more than 7000 server hours (Intel Xeon
E5-2630 v4 @ 2.2 GHz, 10 Cores) were conducted and are
documented in this section.

A. Quality Metrics

The quality of a learning run has to be measured over the
entire task-space of the subdomain under investigation. For
the direction-distance subdomain, for example, this means to
define a quality measure over all 18 x 14 directions / distances.
Although long kicks and straight kicks are somewhat more
important in this domain, we decided to use the unweighted
average reward over all combinations of subtasks. The quality
of a subtask is the average student reward of 100 repetitions of
the subtask after finishing learning. Figure 3 shows the single
subtask rewards for the direction-distance subdomain using as
a baseline a random subtask selection. The overall quality of
the baseline is 85.8.

It is important to stress, that the learning curves of the
student training are deceiving with respect to measuring the
learning success. This is illustrated with Figure 4. The students
advised with a friendly trainer strategy collected significantly
more reward after 3500 episodes compared to the student
under adversarial trainer strategy. However, with respect to the
overall task of kicking into various directions and distances,
the adversarial student performed significantly better. This is
because the friendly trainer strategy prefers those subtasks for
which the student gets high rewards, while the adversarial
trainer strategy focuses on those subtasks that do not yet gain
high rewards.

B. Statistic Curriculum Learning

Table I shows the results of the friendly, adversarial and
dynamic strategy when using SCL over an increasing amount
of episodes (relative to a full training length of two days).



Fig. 3. Average-100 reward for kicking into the desired direction (x-axis)
and distance (y-axis) of a random trainer strategy (baseline).

Fig. 4. Student learning curves for students advised with a friendly, adversarial
and random trainer.

Dynamic switched from friendly to adversarial after 75%
of the specified episodes as found to work best in earlier
experiments.

As can be seen, an adversarial SCL strategy reaches the
quality of a random baseline learning with 10% less episodes
and improves the overall result by 1%. Figure 5 shows the
detailed comparison of the performance for this subdomain.
Blue fields mark kick distances/directions where SCL is better,
red, where the baseline is better. From Figure 6 we can see that
the adversarial strategy focused on areas in which the agent
performed below average on the baseline.

TABLE I
SCL AND DDRL RESULTS FOR THE DISTANCE-DIRECTION SUBDOMAIN.

Epi-
sodes

Base-
line

Friendly Adversarial Dynamic
SCL DDRL SCL DDRL SCL DDRL

100% 85.80 84.34 86.03 86.81 84.42 86.06 86.15
90% 84.04 83.23 85.61 86.00 83.78 84.80 85.44
75% 83.44 82.73 85.31 85.03 83.73 84.11 85.20
50% 81.94 81.67 85.38 82.82 82.65 82.75 83.56

Fig. 5. SCL results in the distance-direction domain as a delta to the baseline.

Fig. 6. Number of explorations of the adversarial SCL in the distance-
direction subdomain.

C. Double Deep Reinforcement Learning

The results of having the trainer also use DRL to learn
a trainer strategy are shown in Table I. Dynamic, again,
switched from friendly to adversarial after 75% of the specified
episodes. The most successful strategy is a dynamic strategy
when running the full two days training. However, the friendly
strategy almost reached the results of the baseline with only
50% of the cycles and still performing slightly better than the
baseline after 100% of all episodes.

Figure 7 shows the detailed comparison of the DDRL
performance for this subdomain. Blue fields mark kick dis-
tances/directions where DDRL is better, red, where the base-
line is better. For the short and medium range kicks, the train-
ing worked better with DDRL. It is still under investigation,
why especially the long straight kicks dropped in performance
in this setup. One possible reason is that PPO creates many
border values (-1 and 1) in the action space of the trainer
especially in the early phase when the student’s rewards are
almost equally bad in the whole task domain (see Figure 8).
This probably prevents even better results.



Fig. 7. DDRL results as a delta to the baseline using dynamic strategy.

Fig. 8. Number of explorations of the dynamic DDRL.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown that DRL can be used by a
trainer to automatically create learning curriculums for DRL
student tasks. This Double Deep Reinforcement Learning with
trainer and student using DRL lead to significantly faster
training in the distance direction kicking subdomain. Two
important insights are that the learning curves alone are de-
ceiving with respect to the quality of the overall learning task
and that some randomness in the curriculum is still necessary
to counteract the degrading of quality for one subtask while
others are learned.

One problem that is still under investigation is, that PPO
creates many border values (-1 and 1) in the action space of the
trainer especially in the early phase when the student’s rewards
are almost equally bad in the whole task domain. Future work
should investigate in using alternative sampling functions than
those used in PPO to have a more evenly sampled action space.
Alternatively, other on-policy or off-policy algorithms could be
used instead of PPO.
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